首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用顺丁橡胶,丁苯橡胶及聚氯乙烯与带有CH2=CH-端基的液晶化合物共混,溶液浇铸法成膜,橡胶/液晶复合膜利用S2Cl2蒸气交联。用体积法测定膜的透气性,着重研究了不同基质材料及不同液晶类型对气体分离性能的影响。结果表明顺丁橡胶/液晶复合膜的透气系数最高,且分离性能也最好。  相似文献   

2.
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.  相似文献   

3.
R. Zimehl   《Thermochimica Acta》1998,310(1-2):207-215
Three different types of polymer networks (polymer resins) were investigated by flow microcalorimetry and selective liquid sorption from 1-propanol(1)-water(2) mixtures. Type 1 network structure is formed by non-polar, non-swelling, macroporous resins (Amberlite XAD-2, Amberlite XAD-4). The composite isotherms for alcohol sorption were S-shaped. 1-Propanol is preferentially sorbed up to x1≈0.5. Macroreticular non-ionic resins, Amberlite XAD-7 and XAD-8, represent the second type of polymer structure. These particles have a considerable extent of swelling in the binary liquid mixture and 1-propanol was preferentially sorbed by the polymer. The composite isotherms were U-shaped and exhibit maxima and minima. The third type of network structure is attached to macroreticular polar, hydrophilic ion-exchange resins (Chelite-S, Amberlyste A-21). Depending on the composition range of the binary liquid mixture, the resins may swell to a different extent and water is preferentially embeded in the porous polymer network. The swelling of the polymer networks was monitored by the gravimetric technique in separate experiments. The sorption capacity determined from the liquid uptake of the resins was related to the sorption capacity derived from the reduced surface excess. The enthalpy effect accompanying the sorption process was determined by flow and immersion microcalorimetry. The enthalpy of displacement isotherms reveals differences in polarity and swelling ability of the polymer network fairly well. Structural changes in the adsorption layers and formation of alcohol-water clusters on the surfaces play an important role.  相似文献   

4.
Composite membranes, consisting of Nafion and inorganic oxide additives, are frequently discussed alternative materials to overcome the known low conductivity of pure Nafion at temperatures above 100 °C and at low relative humidity. It has been reported that under dry conditions, these membranes show enhanced water uptake and diffusion as compared to filler-free Nafion. This work focuses on the polymer mobility in Nafion/SiO(2) composites and on the impact of the silica particles on the polymer dynamics. [Nafion/(SiO(2))(X)] composite membranes (with X ranging from 0 to 15 wt%) in the dry and wet states were investigated by variable temperature solid-state (19)F NMR spectroscopy. (19)F T(1) and T(1ρ) relaxation times, and NMR lineshapes (linewidths and spinning sideband intensities) were analyzed to get information about the polymer mobility. It is found that Nafion composite membranes, in general, possess a higher mobility as compared to recast Nafion which is in agreement with previous results from conductivity studies. These findings are attributed to the ability of the SiO(2) particles to keep more water inside the composite membranes which also leads to a higher mobility of the polymer component. The results are further supported by the experimental (19)F{(1)H} CP/MAS NMR spectra. It is also shown that the structure of the composite membranes is more stable after dehydration, and possible condensation reactions are diminished in these membranes. In addition, the decrease in ionic exchange capacity after dehydration is less pronounced for the composite membranes as compared to filler-free Nafion.  相似文献   

5.
In the present work, the cellulose-based materials were manufactured and used as components of electrochemical double layer capacitors (EDLCs). The preparation method of cellulose membranes as well as composite electrodes containing cellulose as a binder was presented. These materials were prepared using for the first time ionic liquid/dimethyl sulfoxide (IL/DMSO) mixture solvent. Obtained components displayed a uniform structure, thermal stability, and good electrochemical properties. The electrochemical performances of these materials were studied in 2-electrode EDLC cells by common electrochemical techniques as cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). The composite electrodes were investigated in three types of electrolytes: aqueous, organic, and ionic liquids. The cellulose membranes were, however, soaked in an aqueous electrolyte and tested as hydrogel polymer electrolytes. All investigated materials show high efficiency in terms of specific capacity. The studied cellulose-based capacitors exhibited specific capacitance values in the range of 20–22 F g?1, depending on the type of applied electrolyte.  相似文献   

6.
The dynamic mechanical properties of polymeric composites composed of poly (methyl methacrylate) continuous-phase and various inclusion types of heterocoagulated composite particles were investigated in order to relate them to the morphology of shell region of composite particles. Using the heterocoagulation process, large particles were encapsulated with various types of small particles: (1) conventional linear-type polymer particles; (2) crosslinked polymer particles; and (3) reactive polymer particles capable of forming crosslinked structure, whereby the interfacial properties of the composite become modified. These composite particles were subsequently annealed to form continuous shell regions and then mixed with matrix particles. It is shown that chain diffusion movement of the small particles having different chain characteristics influences the network formation at the interfacial shell region. The ability of maintaining interfacial domain structure depends on the degree of network formation.  相似文献   

7.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

8.
P(VDF-HFP)-PMMA/CaCO3(SiO2)复合聚合物电解质的电化学性质   总被引:1,自引:0,他引:1  
采用激光扫描共焦显微镜、X射线衍射、循环伏安和交流阻抗等方法对由聚(偏二氟乙烯-六氟丙烯)(P(VDF-HFP))、聚甲基丙烯酸甲酯(PMMA)以及纳米碳酸钙(二氧化硅)制备的几种复合聚合物电解质(CPE)膜P(VDF-HFP)-PMMA/CaCO3(SiO2)的性能进行了研究. 结果表明, PMMA的加入能提高CPE的吸液率, 从而增大其离子导电率. 在P(VDF-HFP)与PMMA质量比为1:1条件下制得的CPE性能最佳. 用P(VDF-HFP)-PMMA为聚合物基体与纳米级SiO2、CaCO3进行复合制成的聚合物膜, 无机粒子的加入没有破坏原来聚合物非晶结构; 室温下CPE的电导率达到3.42 mS·cm-1; 电化学稳定窗口为4.8 V. 电池Li/CPE/GMS(石墨基材料)的测试证明, CPE与石墨负极有很好的相容性. 聚合物电池Li/CPE(CaCO3)/LiCoO2比Li/CPE)(SiO2)/LiCoO2具有更优越的倍率放电性能.  相似文献   

9.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   

10.
The present work aimed the mass transfer investigation in the removal of organic contaminants from water by the pervaporation process. The terpolymer ethene-propene-diene (EPDM) was used as the selective elastomer. Two classes of model organic solutes were chosen: chlorinated hydrocarbons (trichloroethylene, dichloromethane and trichloromethane) and aromatic ones (toluene, phenol and aniline). Pervaporation tests were carried out using dense and composite membranes with different thickness, solute concentrations and feed flow velocities at room temperature. The liquid boundary layer resistance (i.e., concentration polarization phenomenon) was observed for all solutes. The resistance-in-series model was used to determine liquid and polymer phase resistances. The results obtained indicate that the model would be better written considering the chemical potential gradient as driving force, in order to take into account affinity between water and the organic solutes, as well as their interactions with the polymer selective layer. The rational activity coefficients of the solutes in the polymer phase were determined by inverse gas chromatography (IGC) and related to the mass transfer coefficient in the polymer phase.  相似文献   

11.
种子乳液聚合中复合乳胶粒结构形态的热力学分析   总被引:5,自引:0,他引:5  
阚成友  杜奕  刘德山  焦书科 《化学学报》2002,60(6):1129-1133
为了得到一种能够预测和控制乳胶粒结构形成的定量方法,本研究选用含有两 种聚合物乳胶粒(P_a和P_b)和水的体系作为模型体系来模拟种子乳液聚合体系,在 不考虑动力学因素的条件下,对乳胶粒可能出现的三种极限形态进行了热力学分析 。结果表明,最终乳胶粒稳定的结构形态不仅取决于体系中的P_a,P_b和水三者之 间的界面张力γ_(aw),γ_(bw)和γ_(ab),而且还取决于两聚合物的体积分数 V_a和V_b。形成P_a/P_b型正核壳结构乳胶粒的热力学必要条件是(γ_(aw)-γ_ (bw))/γ_(ab) > V_a~(2/3)-V_b~(2/3)和(γ_(aw)-γ_(ab))/γ_(bw) > (1- V_b~(2/3))/V_a~(2/3);形成P_a/P_b型反核壳结构乳胶粒的热力学必要条件是(γ _(aw)-γ_(bw))/γ_(ab) < V_a~(2/3)-V_b~(2/3)和(γ_(bw)-γ_(ab))/γ_(aw) > (1-V_a~(2/3))/V_b~(2/3)。对以聚丙烯酸酯为种子有机硅氧烷的乳液聚合体系 的初步研究结果表明,所得乳胶粒的结构形态与利用上述热力学关系式预测的结果 基本一致。  相似文献   

12.
Ultrathin membranes of a polymer/(liquid crystal) mixture were prepared by spreading a single drop of a casting solution on the water surface. The thickness and the aggregation state of the water-cast membrane can be controlled by the kind of solvent and the concentration of the solution. In the case of a liquid crystalline state above the crystal-nematic phase transition temperature, T KN, the polymer (liquid crystal) composite membrane follows Henry's law for the sorption isotherm of hydrocarbon gases and, also, Fickian sorption for the sorption-desorption kinetics. These results indicate that hydrocarbon gases permeate through a homogeneous medium composed of liquid crystalline molecules. Therefore, the permeability coefficients of hydrocarbon gases can be controlled by the dimensions of the channels through which the gas molecules diffuse. The channel for diffusion is generated by thermal or fluctuating molecular motion which opens up the intermolecular distance between liquid crystalline molecules. In the case of a self-supported liquid crystalline membrane, the channel dimension can be controlled in the range of several Å by both the intermolecular distance and the degree of thermal molecular motion of the liquid crystalline molecules. Separation of hydrocarbon isomers was investigated by use of composite membranes composed of a polymer matrix and self-supported liquid crystalline molecules.  相似文献   

13.
The present work tries to introduce a high‐performance nano‐composite membrane by using polydimethylsiloxane (PDMS) as its main polymer matrix to meet some specific requirements in industrial gas separations. Different nano‐composite membranes were synthesized by incorporating various amounts of nano‐sized silica particles into the PDMS matrix. A uniform dispersion of nano‐particles in the host membranes was obtained. The nano‐composite membranes were characterized morphologically by scanning electron microscopy and atomic force microscopy. Separation properties, permeability, and ideal selectivity of C3H8, CH4, and H2 through the synthesized nano‐composite membranes with different nano‐particle contents (0.5, 1, 1.5, 2, 2.5, and 3 wt%) were investigated at different pressures (2, 3, 4, 5, 6, and 7 atm) and constant temperature (35°C). It was found out that a 2 wt% loading of nano‐particles into the PDMS matrix is optimal to obtain the best separation performance. Afterwards, sorption experiments for the synthesized nano‐composite membranes were carried out, and diffusion coefficients of the gases were calculated based on solution‐diffusion mechanism. Gas permeation and sorption experiments showed an increase in sorption and a decrease in diffusion coefficients of the gases through the nano‐composite membranes by adding nano‐particles into the host polymer matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
从分子水平角度对改性PEU/LCP复合膜的合成进行设计,TN1及复钙、溶血、血小板粘附试验测定表明:一定质量比的LCP与PEU进行共混交联复合,其复合膜的血液相容性及物理机械性能得到极大的改善。这说明,这种设计合成路线是可行的。  相似文献   

15.
以聚乙烯醇(PVA)与膨润土(bentonite)和氢氧化钾为原料, 采用溶液浇铸法制备了PVA-膨润土-KOH-H2O复合碱性聚合物电解质膜. 运用X衍射(XRD)、扫描电镜(SEM)和循环伏安(CV)等技术对复合膜进行了表征, 分析了膨润土对聚合物膜电导率的影响. 结果表明, 膨润土对电解质的导电性能具有双重作用: 一方面膨润土本身会阻塞PVA内部结构中的部分离子通道, 导致复合电解质的电导率降低; 另一方面, 膨润土有助于体系中KOH含量的增加, 同时PVA-膨润土相界面高导电性缺陷层的形成有助于体系电导率的提高. 当体系水的质量分数较低时, 复合电解质体系电导率存在极大值; 当w(H2O)为65%时, 则观察到电导率的线性增加趋势; 电解质最高室温电导率达0.110 S·cm-1. XRD图谱显示适当配比的复合膜中PVA呈无定形态; SEM结果证实了适当配比的复合膜中存在大量微米级孔径的微孔通道. 循环伏安曲线表明PVA-膨润土-KOH-H2O碱性聚合物电解质膜有约2.0 V的较宽电化学稳定窗口.  相似文献   

16.
Composite mordenite/ZSM5/chabazite membranes were prepared on α-alumina tubular supports by in situ liquid phase hydrothermal synthesis. The membranes obtained were approximately 10 μm thick and were characterized by XRD, SEM and EPMA, as well as permeation of single gases (N2 and n-butane). The membranes were then used to separate ternary mixtures, containing water, alcohol (methanol, ethanol or propanol), and a permanent gas (O2). Water permeated faster because of the hydrophilic character of the composite membrane, with water/propanol selectivities as high as 149. The influence of operating conditions (temperature, pressure and feed composition) on the separation performance was analyzed. Also, the behavior of this composite zeolite membrane was compared with that of pure silicalite and ZSM5 membranes, and the differences observed are discussed in terms of relative organophilicity/hydrophilicity of the zeolites involved.  相似文献   

17.
This study reports on the preparation of a composite polymer electrolyte for secondary lithium-ion battery. Poly(vinylidiene fluoride-hexafluoropropylene) (P(VDF-HFP)) was used as the polymer host, and mesoporous SBA-15 (silica) ceramic fillers used as the solid plasticizer were added into the polymer matrix. The SBA-15 fillers with mesoporous structure and high specific surface can trap more liquid electrolytes to enhance the ionic conductivity. The ionic conductivity of P(VDF-HFP)/SBA-15 composite polymer electrolytes was in the order of 10−3 S cm−1 at room temperature. The characteristic properties of the composite polymer membranes were examined by using FTIR spectroscopies, scanning electron microscopy (SEM), and an AC impedance method. For comparison, the LiFePO4/Li composite batteries with a conventional microporous polyethylene (PE) separator and pure P(VDF-HFP) polymer membrane were also prepared and studied. As a result, the LiFePO4/Li composite battery comprised the P(VDF-HFP)/10 wt.% m-SBA-15 composite polymer electrolyte, which achieves an optimal discharge capacity of 88 mAh g−1 at 20 C rate with a high coulomb efficiency of 95%. It is demonstrated that the P(VDF-HFP)/m-SBA-15 composite membrane exhibits as a good candidate for application to LiFePO4 polymer batteries.  相似文献   

18.
制备了基于磺化聚芳醚砜(SPAES)及聚醚砜(PES)的填充型复合质子交换膜, 研究了其吸水率、 尺寸变化、 热-机械特性、 质子电导率、 甲醇透过性及稳定性等性能. 通过浸入沉淀相转化法, 采用磺化度分别为30%(S30), 40%(S40)及50%(S50)的SPAES与PES制备了系列微孔型复合质子交换膜 Sx-y(x为SPAES的磺化度, y为SPAES的质量分数); 然后利用真空抽滤法在微孔中填充S50制备了相应的填充型复合质子交换膜Sx-y+F50. 结果表明, 由于微孔的引入及皮层结构的存在, Sx-y膜在低离子交换容量(IEC)条件下仍具有较高的电导率、 优良的机械强度、 优异的化学稳定性及较低的甲醇透过性. 经S50填充后, Sx-y+F50膜的IEC及电导率明显提升, 甲醇透过率大幅下降, 但机械强度及化学稳定性未见劣化. 其中S30-40+F50膜(IEC=0.69 mmol/g)的综合性能最佳, 其质子电导率在90 ℃水中达到50.4 mS/cm; 经140 ℃水处理24 h后失重率仅为8.2%, 质子电导率降低仅9%; 经过芬顿试剂(3% H2O2, 20 mg/L FeSO4, 80 ℃, 1 h)处理后失重率仅为0.66%; 甲醇透过率仅为6.8×10-8 cm2/s.  相似文献   

19.
通过在磺化聚醚醚酮(SPEEK)中掺杂1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC))制备出SPEEK/Zr(PBTC)复合质子交换膜.结果表明,与纯SPEEK膜相比,Zr(PBTC)的掺杂能降低复合膜的吸液量及甲醇透过系数,且随着Zr(PBTC)含量的增加,这种作用越趋明显.在室温至80℃范围内,复合膜的甲醇透过系数在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,当温度大于90℃时,含40wt%Zr(PBTC)的复合膜电导率超过Nafion115膜,并在160℃时达到0.36S.cm-1.使用温度的提高及在高温下的高电导率表明该复合膜适合在高温DMFC中使用.  相似文献   

20.
Polymer composite membranes based on sulphonated polymers, such as sulphonated poly(ether ketone) and sulphonated poly(ether ether ketone), and silicates were prepared and characterized for water/methanol permeabilities and proton conductivity studies. The study showed methanol and water permeability in the composite system decreased, with respect to the plain polymer/ionomer, with the increase in content of silicates. The permeability reduction in the composite membranes is discussed using models and theories. It was also found that the proton conductivity of the ionomer-composite membranes increased with the increase in total flux of the system, emphasising a good correlation between the total flux of the composite membranes and proton conductivity. The work clearly demonstrates that the same transport mechanism governs both methanol-water crossover and proton conductivity in these polymer electrolyte composite membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号