首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ahola S  Telkki VV  Stapf S 《Lab on a chip》2012,12(10):1823-1830
Velocity distributions (so-called propagators) with two-dimensional spatial resolution inside a chemical micromixer were measured by pulsed-field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR). A surface coil matching the volume of interest was built to enhance the signal-to-noise ratio. This enabled the acquisition of velocity maps with a very high spatial resolution of 29 μm × 39 μm. The measured propagators are compared with theoretical distributions and a good agreement is found. The results show that the propagator data provide much richer information about flow behaviour than conventional NMR velocity imaging and the information is essential for understanding the performance of a micromixer. It reveals, for example, deviations in the shape and size of the channel structures and multicomponent flow velocity distribution of overlapping channels. Propagator data efficiently compensate lost information caused by insufficient 3D resolution in conventional velocity imaging.  相似文献   

2.
This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.  相似文献   

3.
Nafion/sb-CD membranes were prepared by mixing 5 wt% Nafion solution with H+-form sulfated beta-cyclodextrin (sb-CD), and their water uptakes, ion exchange capacities (IECs), and ionic cluster size distributions were measured. Gravimetric and thermogravimetric measurements showed that the water uptake of the membranes increased with increases in their sb-CD content. The IECs of the membrane were measured with acid-base titration and found to increase with increases in the sb-CD content, reaching 0.96 mequiv/g for NC5 ("NCx" denotes a Nafion/sb-CD composite membrane containing x wt% of sb-CD). The cluster-correlation peaks and ionic cluster size distributions of the water-swollen membranes were determined using small-angle X-ray scattering (SAXS) and 1H nuclear magnetic resonance (NMR) cryoporometry, respectively. The SAXS experiments confirmed that increases in the sb-CD content of the membranes shifted the maximum SAXS peaks to lower angles, indicating an increase in the cluster correlation peak. NMR cryoporometry is based on the theory of the melting point depression, Delta Tm, of a liquid confined within a pore, which is dependent on the pore diameter. The melting point depression was determined by analyzing the variation of the NMR signal intensity with temperature. Our analysis of the intensity-temperature (IT) curves showed that the ionic cluster size distribution gradually became broader with increases in the membrane sb-CD content due to the increased water content, indicating an increase in the ionic cluster size. This result indicates that the presence of sb-CD with its many sulfonic acid sites in the Nafion membranes results in increases in the ionic cluster size as well as in the water uptake and the IEC. We conclude that NMR cryoporometry provides a method for determining the ionic cluster size on the nanometer scale in an aqueous environment, which cannot be obtained using other methods.  相似文献   

4.
A capillary-based model modified for characterization of monolithic cryogels is presented with key parameters like the pore size distribution, the tortuosity and the skeleton thickness employed for describing the porous structure characteristics of a cryogel matrix. Laminar flow, liquid dispersion and mass transfer in each capillary are considered and the model is solved numerically by the finite difference method. As examples, two poly(hydroxyethyl methacrylate) (pHEMA) based cryogel beds have been prepared by radical cryo-copolymerization of monomers and used to test the model. The axial dispersion behaviors, the pressure drop vs. flow rate performance as well as the non-adsorption breakthrough curves of different proteins, i.e., lysozyme, bovine serum albumin (BSA) and concanavalin A (Con A), at various flow velocities in the cryogel beds are measured experimentally. The lumped parameters in the model are determined by matching the model prediction with the experimental data. The results showed that for a given cryogel column, by using the model based on the physical properties of the cryogel (i.e., diameter, length, porosity, and permeability) together with the protein breakthrough curves one can obtain a reasonable estimate and detailed characterization of the porous structure properties of cryogel matrix, particularly regarding the number of capillaries, the capillary tortuousness, the pore size distribution and the skeleton thickness. The model is also effective with regards to predicting the flow performance and the non-adsorption breakthrough profiles of proteins at different flow velocities. It is thus expected to be applicable for characterizing the properties of cryogels and predicting the chromatographic performance under a given set of operating conditions.  相似文献   

5.
苯乙烯-马来酸酐共聚物的核磁共振分析   总被引:1,自引:0,他引:1  
利用^1H NMR、^13C NMR及DEPT(无畸变极化转移增强)核磁共振技术研究了苯乙烯-马来酸酐共聚物(SMA)的序列结构和组成,并比较了几种核磁共振实验技术对分析SMA结果的准确性;实验表明^1H NMR是分析组成的简单、快速而有效的方法,DEPT谱进行序列结构计算准确度较高。  相似文献   

6.
1H Fast Field Cycling NMR (FFC-NMR) relaxometry is proposed as a powerful method to investigate tumour stroma in vivo upon the administration of a Gd-based contrast agent. To perform this study, an FFC-NMR equipment endowed with a wide bore magnet was used for the acquisition of Nuclear Magnetic Resonance Dispersion profiles on healthy muscle and tumour tissue in living mice. At magnetic field strengths < of ca. 1 MHz, the differences in the relaxation rates of the intra and extracellular compartment become of the same order of magnitude of the exchange rate across the cellular membranes. Under this condition, the water exchange rate between the two compartments yields to a biexponential magnetization recovery that can be analysed by fitting the experimental data with the two-Site eXchange (2SX) model. Using this model, it was possible to obtain, for the two compartments, both relaxation properties and water kinetic constants for water exchange across cell membranes. The method allowed us to determine the effect of the “matrix” on the water proton relaxation times and, in turn, to get some insights of the composition of this compartment, till now, largely unknown.  相似文献   

7.
Nonequilibrium molecular dynamics (NEMD) simulations are used to investigate pressure-driven water flow passing through carbon nanotube (CNT) membranes at low pressures (5.0 MPa) typical of real nanofiltration (NF) systems. The CNT membrane is modeled as a simplified NF membrane with smooth surfaces, and uniform straight pores of typical NF pore sizes. A NEMD simulation system is constructed to study the effects of the membrane structure (pores size and membrane thickness) on the pure water transport properties. All simulations are run under operating conditions (temperature and pressure difference) similar to a real NF processes. Simulation results are analyzed to obtain water flux, density, and velocity distributions along both the flow and radial directions. Results show that water flow through a CNT membrane under a pressure difference has the unique transport properties of very fast flow and a non-parabolic radial distribution of velocities which cannot be represented by the Hagen-Poiseuille or Navier-Stokes equations. Density distributions along radial and flow directions show that water molecules in the CNT form layers with an oscillatory density profile, and have a lower average density than in the bulk flow. The NEMD simulations provide direct access to dynamic aspects of water flow through a CNT membrane and give a view of the pressure-driven transport phenomena on a molecular scale.  相似文献   

8.
IntroductionAsmodificationofgas solidfluidizedbeds ,jet tingfluidizedbedsarewidelyusedinavarietyofphysicalandchemicalprocessesbecauseoftheirgoodmixingcharacteristics ,highheatandmasstransferrates ,andfastchemicalreaction .However ,thelackofcompleteundersta…  相似文献   

9.
The microchemistry of interfaces and corresponding interlayers in different fibre-reinforced ceramic and glass composite systems has been investigated by using a dedicated scanning transmission electron microscope demonstrating the potential applicabilities of such an instrument to this large field of materials science. Energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy were used to determine the materials composition on a nanometre scale. Besides analyses performed in the spot mode of the electron probe the distributions of the elements present in the interface region were measured as line profiles across the relevant interface structure by X-ray spectroscopy with a lateral resolution of about 5 nm, even for the detection of a light element as carbon. Moreover, in the composite systems under investigation the two-dimensional element distribution was also attained by energy-filtered imaging. In addition, first results of energy loss near edge structure analyses are presented indicating variations of the chemical bonding of silicon at the interface in a Nicalon fibre/Duran glass composite.  相似文献   

10.
Nature of flow on sweeping gas membrane distillation   总被引:5,自引:0,他引:5  
The process of sweeping gas membrane distillation (SGMD), with the liquid feed and the sweeping gas counterflowing in a plate and frame membrane module, has been studied. A theoretical model, which was presented in a previous paper and permitted to obtain the temperature profiles inside the fluid phases, has been developed in order to analyse the physical nature of the transmembrane water flux. Two porous hydrophobic membranes have been studied in different experimental conditions. The influence of some relevant parameters, such as the inlet and outlet temperatures or the circulation velocities of the fluids, has been studied. The experimental results have been analysed according to the model and the conclusion is that the water transport takes place, apparently, via a combined Knudsen and molecular diffusive flow mechanism. From the temperature profiles, a local temperature polarisation coefficient may be defined. From this local value, an overall one for the whole system is then defined. The new theoretical predictions have been applied to the obtained results and the accordance may be considered good.  相似文献   

11.
Examples of NMR imaging used to study the evolution of microstructure and flow velocities in sheared, highly filled suspensions are described. Fast NMR imaging methods were used to freeze the motion in a falling-ball experiment, allowing us to monitor the local concentrations of suspended particles and ball position during the course of the experiment The migration of particles induced by shear and concentration gradients was followed in a Couette cell. Flow imaging methods were developed and applied to a Newtonian fluid and a non-Newtonian suspension flowing in an axisymmetric pipe contraction.  相似文献   

12.
We present the first 13C magnetic resonance imaging study of CO2 transient adsorption/desorption processes in a zeolite 5A column. CO2 transient concentration profiles were measured with a centric scan spin-echo single point imaging technique. The adsorption wave profiles were determined under flow conditions, with the results analyzed by the Bohart-Adams model. The model adequately accounts for the spatial and the temporal behavior of CO2 in the column. CO2 adsorption rate constants were calculated from the fit. Desorption profiles were acquired by blowing a helium stream through a zeolite 5A column saturated with CO2. An asymmetry between the adsorption and desorption profiles is readily apparent. A linear relationship between the CO2 condensed phase concentration and square root of time was observed.  相似文献   

13.
The effect of the choice of the standard probabilistic model to describe the pore size distribution was theoretically studied on predicting membrane performance parameters, area average water flux and area average membrane sieving coefficient. Preliminary discrete pore size distributions were generated from rejection profiles of dextran and PEG for 10,000, 30,000 and 100,000 molecular weight cutoff (MWCO) polysulfone and cellulose acetate membranes. The standard probability distribution functions (PDF), gamma, lognormal, normal, Weibel and Rayleigh were used to fit the resulting pore size distribution data. It was observed that the area averaged sieving coefficients are sensitive to the choice of the PDF. These results implied that an uncertainty in the choice of distribution in describing the membrane morphology could lead to a propagated uncertainty in predicting overall membrane performance.  相似文献   

14.
Measurements of local enthalpies and velocities have been performed in plasma jets generated by a DC plasma spray torch, using an enthalpy probe. The torch has been operated in an argon confined atmosphere at different currents and argon flow rates.(1) The validity of the measured enthalpy and velocity profiles has been checked by performing energy flux and mass flux balances, which show reasonable agreement between the input quantities, measured independently, and those obtained by integrating over the experimental profiles. The data are compared with those obtained by operating the same torch in ambient air. The results show that temperatures and velocities measured in pure argon are substantially higher than those in air, and consequently, the jets in argon appear wider and substantially longer.  相似文献   

15.
The interior of intact, extinguished cigarettes following smoldering and puffing combustion was examined by proton magnetic resonance imaging (MRI). Spin-echo imaging sequences were employed to image substances with high molecular mobility such as water, smoke condensate, and waxy materials native to unburned tobacco. Single-point imaging (SPI) methods were employed to image the more rigid components, such as tobacco cell wall polysaccharides and cellulose acetate fibers inside the filter. The distribution of spin–spin relaxation times (T2) of the tobacco and filters was measured using a low-field 1H NMR bench-top spectrometer. One-dimensional profiles and two-dimensional images revealed the distribution of combustion and pyrolysis products deposited on the unburned portion of tobacco and in the filter of the cigarette. Image features as small as 25 μm were resolved. The current results demonstrate the feasibility of employing MRI to study combustion in burning cigarettes and other materials in real time.  相似文献   

16.
The velocity distribution of liquid flowing in a commercial micromixer has been determined directly by using pulsed-field gradient NMR. Velocity maps with a spatial resolution of 29 microm x 43 microm were obtained by combining standard imaging gradient units with a homebuilt rectangular surface coil matching the mixer geometry. The technique provides access to mixers and reactors of arbitrary shape regardless of optical transparency. Local heterogeneities in the signal intensity and the velocity pattern were found and serve to investigate the quality and functionality of a micromixer, revealing clogging and inhomogeneous flow distributions.  相似文献   

17.
Since the finding of β2-microglobulin as a causal substance in the carpal tunnel syndrome of chronic hemodialysis patients, removal of β2-microglobulin has been performed using highly permeable dialysis membranes with larger pores. Such large-pore membranes tend to allow endotoxins (Et), harmful substances contained in dialysate, to enter blood. At present, as a countermeasure, Et-blocking filtration membranes are used to remove Et from dialysate. However, Et removal mechanism by these membranes has not been clarified yet. The objective of this study is thus to visualize distribution of fluorescence-labeled Et trapped inside the polyester–polymer alloy (PEPA) membrane, a widely used Et-blocking filtration membrane using a confocal laser scanning fluorescence microscope (CLSFM). Et were observed mainly in the outer skin layer of the hollow fiber, while some in the void and inner skin layers. No Et were present inside the hollow fiber. In conclusion, we succeeded in visualization of Et distribution inside the Et-blocking filtration membrane using CLSFM. This novel visualization technique may allow evaluation of distribution of Et trapped inside various kinds of Et-blocking filtration membranes.  相似文献   

18.
Molla S  Eskin D  Mostowfi F 《Lab on a chip》2011,11(11):1968-1978
Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (~0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.  相似文献   

19.
A theoretical model for calculating radial and axial temperature profiles in a nitrogen ICP discharge was improved to include the normal distribution of magnetic flux density and a three-gas flow pattern commonly used in spectrochemical applications. Calculated radial temperature and particle velocity distributions for nitrogen ICP discharges compare well with experimentally obtained data.  相似文献   

20.
A comprehensive finite difference model is developed and presented to predict concentration polarization (CP) in commercial spiral wound membranes. The model was developed by solving the non-conservative mass balance equation in the feed channel employing fluid flow profiles based on feed spacer mixing. Both ideal membranes with complete solute rejection characteristics and non-ideal membranes were considered. The model predicts CP for low, moderate as well as high solvent recovery up to 90%. The model was tested for numerical stability and convergence, and subsequently applied to generate CP and permeate flow loss information for a range of feed and operating conditions. The model results were verified experimentally on 1.89×10−4 m3/s pilot-scale spiral wound reverse osmosis (RO) unit. Since flow loss in membranes is a dynamic phenomenon, it is anticipated that the model will be an appropriate choice for further work on predicting long-term permeate flow loss from membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号