首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Previous considerations of dust acoustic waves is demonstrated to be inconsistent ‐ the required equilibrium state for perturbations was not defined since balance of plasma fluxes was neglecting. The self‐consistent treatment shows that plasma flux perturbations are accompanying any collective waves propagating in dusty plasmas and can play an important role in wave dispersion, wave damping and can create instabilities. This is illustrated by the derivation of dispersion relation for dust acoustic modes taking into account the plasma flux balances and plasma flux perturbations by waves. The result of this approach shows that the dust acoustic waves with linear dependence of wave frequency on the wave number exist only in restricted range of the wave numbers. Only for wave numbers larger than some critical wave number for low frequency modes the frequency can be have approximately a linear dependence on wave number and can be called as dust acoustic wave but the phase velocity of these waves is different from that which can be obtained neglecting the flux balance and depends on grain charge variations which are determined by the balance of fluxes. The presence of plasma fluxes previously neglected is the main typical feature of dusty plasmas. The dispersion relation in the range of small wave numbers is found to be mainly determined by the change of the plasma fluxes and is quite different from that of dust acoustic type, namely it is found to have the same form as the well known dispersion relation for the gravitational instability. This result proves in general way the existence of the collective grain attractions of negatively charged grains for for large distances between them and for any source of ionization. The attraction of grains found from dispersion relation of the dust acoustic branch coincides with that found previously for pair grain interactions using some models for the ionization source. For the existing experiments the effective Jeans length for such attraction is estimated to be about 8 – 10 times larger than the ion Debye length and the effective gravitational constant for the grain attraction is estimated to be several orders of magnitude larger than the usual gravitational constant. The grain attraction at large inter‐grain distances described by the gravitationlike grain instability is considered as the simplest explanation for observed dust cloud clustering, formation of dust structures including the plasma crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《Physics letters. A》2020,384(25):126462
The effects of dust charge gradient (DCG) force and polarization force have been investigated on the properties of dust acoustic wave (DAW) and linear Jeans instability in strongly coupled dusty plasma. In the kinetic regime, DCG and polarization forces modify the DAW mode and couple with compressional viscoelastic wave mode. The Jeans instability criterion and critical wavenumber have been modified due to DCG force, polarization force and strong coupling effects. The results have been discussed in the warm photodisassociation region and in the laboratory complex plasmas. The strong correlation effect and the charge variation parameter stabilize the growth rate of Jeans instability. But, the polarization parameter stabilize the growth rate for positively charged dust grains and destabilize for negatively charged dust grains. The implications of charge gradient and polarization parameters are discussed for lower and higher charges in the laboratory complex plasma which decreases the growth of the propagating DAW.  相似文献   

3.
The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.  相似文献   

4.
The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system.  相似文献   

5.
Using a test particle approach, the dynamical wake potential has been examined in a homogeneous self-gravitating dusty plasma. The periodic oscillatory potential might lead to an alternative approach to the Jeans instability for the formation of dust agglomeration leading to gravitational collapse of the self-gravitating systems.  相似文献   

6.
The effective one-fluid adiabatic magnetohydrodynamic (MHD) equations for a multicomponent plasma comprising of electrons, ions, and dust are used to investigate the nonlinear coupling of dust Alfven and dust acoustic waves in the presence of radiation pressure as well as the Jean’s term that arises in a self-gravitating plasma. In this context, the set of Zakharov equations are derived. The soliton solutions in the presence of radiation pressure and Jeans term are separately discussed. It is found that ordinary solitons are obtained in the absence of Jeans term whereas cusp solitons are found in the absence of radiation pressure. To the best of our knowledge, cusp solitons are obtained for the first time for a self-gravitating plasma with Jeans term for an electromagnetic wave in a dusty plasma. The modulational instability is also investigated in the presence of radiation pressure and Jeans term. It is found that the Jeans term drives the system modulationally unstable provided it dominates the dust acoustic and radiation pressure terms whereas the radiation pressure enhances the stability of the system. The relevance of the present investigation in the photodissociation region that separates the HII region from the dense molecular clouds is also pointed out.  相似文献   

7.
In this paper, we analyze the stability of a homogeneous self-gravitating plasma, having a non-zero resistivity. This study provides a generalization of the Jeans paradigm for determining the critical scale above which gravitational collapse is allowed.We start by discussing the stability of an ideal self-gravitating plasma embedded in a constant magnetic field. We outline the existence of an anisotropic feature of the gravitational collapse. In fact, while in the plane orthogonal to the magnetic field the Jeans length is enhanced by the contribution of the magnetic pressure, outside this plane perturbations are governed by the usual Jeans criterion. The anisotropic collapse of a density contrast is sketched in detail, suggesting that the linear evolution provides anisotropic initial conditions for the non-linear stage, where this effect could be strongly enforced.The same problem is then faced in the presence of non-zero resistivity and the conditions for the gravitational collapse are correspondingly extended. The relevant feature emerging in this resistive scenario is the cancelation of the collapse anisotropy in weakly conducting plasmas. In this case, the instability of a self-gravitating resistive plasma is characterized by the standard isotropic Jeans length in any directions. The limit of very small resistivity coefficient is finally addressed, elucidating how reminiscence of the collapse anisotropy can be found in the different values of the perturbation frequency inside and outside the plane orthogonal to the magnetic field.  相似文献   

8.
It is shown that a pre-existing dust ripple in a dusty plasma may excite tunable electromagnetic radiation. For our purposes, we use the Maxwell equation and the electron equation of motion to derive a Mathieu equation in the presence of a spatially oscillating dust ripple. The Mathieu equation admits instability of an electromagnetic wave. Criteria under which instability occurs are presented. Explicit expression for the electromagnetic radiation frequency and the growth rate are obtained. The possible relevance of our investigation to nonthermal electromagnetic radiation sources from laboratory and cosmic dusty plasmas is considered.  相似文献   

9.
Making use of the kinetic approach for plasma species, the electrostatic twisted dust-acoustic (DA) waves are studied in a collisionless unmagnetized multi-component dusty plasma consisting of electrons, singly ionized positive ions and charged massive dust grains. The Vlasov-Poisson equations are coupled together to obtain a generalized response function by using the Laguerre-Gaussian (LG) perturbed electrostatic potential and distribution function in the paraxial limit. The dispersive properties and growth rate instability of twisted DA waves are examined with distinct OAM states in a multi-component dusty plasma. Various significant modifications associated with the real wave frequency and growth rate are shown with respect to twist parameter and dust concentration. It is examined that dust concentration enhances the growth rate of twisted DA waves, whereas an increase in twist parameter reduces the growth rate instability. The excitation of twisted DA mode is also found to enhance with streaming speed of inertialess electrons. Our results may be useful for particle transport and trapping phenomena due to wave excitation in laboratory dusty plasmas.  相似文献   

10.
BP Pandey  Vinod Krishan  M Roy 《Pramana》2001,56(1):95-105
The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.  相似文献   

11.
The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the density inhomogeneity and for certain wavelengths, such an unstable mode may dominate the usual streaming instability. However, in the presence of self-gravity, the plasma inhomogeneity causes an overlap between Jeans and streaming modes and collapse of the grain will continue at all wavelengths.  相似文献   

12.
The physical and optical properties of plasmas are depended on dynamics of species in the discharge volume. Then, the presence of an electron beam, as a separate component, in a dusty plasma can modify the plasma structures through altering the discharge parameters. In this report, the linear propagation of acoustic modes in a collisionless dusty plasma contains electrons, ions and charged dust grains is investigated in the presence of an electron beam. Our analysis indicates that the electron beam can modify the dispersion relations of dust acoustic modes which resulted different data transportation in dusty plasmas. The obtained results are also examined for negative and positive charged dust grains with different number densities. The charge of dust grains represents an important role in the dynamics of the low frequency waves. Additionally, our findings reveal that the propagation of acoustic waves in dusty plasmas can be controlled by adjusting the electron number density of the beam and the cathode potential. Lastly, we obtian the destabilizing effects, originated from dust charge fluctuation, by reconsidering the dispersion relations of both dust acoustic modes.  相似文献   

13.
We present investigations of the combined effects of Debye–Hückel repulsive and overlapping Debye spheres attractive interaction potentials around charged dust particles on collective modes, phase separation and ordered structures in a strongly coupled dusty plasma. We obtain static and dynamical information via Molecular Dynamics simulations in the liquid and crystallized phases and identify the onset of an instability in the transverse mode, by using lattice summation method. The results are useful for understanding the origin of coagulation/agglomeration of charged dust particles and the formation of ordered dust structures in low-temperature laboratory and space plasmas.  相似文献   

14.
Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and kinetic limits. The effects of the strong interaction of dust grains and the external magnetic on these DA modes, as well as on the shear wave are examined. It is found that both the real and imaginary parts of DA waves are significantly modified in strongly coupled dusty magnetoplasmas. The implications of our results to space and laboratory dusty plasmas are briefly discussed.  相似文献   

15.
A strongly coupled Yukawa liquid is a system of charged particles which interact via a screened Coulomb interaction and in which the electrostatic energy between neighboring particles is larger than their thermal energy but not large enough for crystallization. Various plasma systems including ultracold neutral plasmas and complex (dusty) plasmas can exist in this strongly coupled liquid phase.Here we investigate instabilities driven by the relative streaming of plasma components in three‐dimensional Yukawa liquids with a focus on complex plasmas. This includes a dust acoustic instability driven by weakly coupled ions streaming through the dust liquid, and a dust‐dust instability driven by the counter‐streaming of strongly coupled dust grains. Compared to the Vlasov behavior we find there can be a substantial modification of the unstable wavenumber spectrum due to strong coupling effects (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
祁学宏  段文山  陈建敏  王善进 《中国物理 B》2011,20(2):25203-025203
The effect of dust size distribution in ultracold quantum dusty plasmas are investigated in this paper. How the dispersion relation and the propagation velocity for the quantum dusty plasma vary with the system parameters and the different dust distribution are studied. It is found that as the Fermi temperature of the dust grains increases the frequency of the wave increases for large wave number dust acoustic wave. The quantum parameter of Hd also increases the frequency of the large wave number dust acoustic wave. It is also found that the frequency ω0 and the propagation velocity v0 of quantum dust acoustic waves all increase as the total number density increases. They are greater for unusual dusty plasmas than those of the usual dusty plasma.  相似文献   

18.
Study of dust ion acoustic waves in a magnetized dusty plasmas composed of negatively or positively charged static dust, positive and negative ions, as well as kappa distribution electrons is presented. The Zakharov–Kuznetsov (ZK) equation is derived via reductive perturbation technique. The solitary wave solution of ZK equation is given and the multi-dimensional instability of these solitary waves is investigated via small k perturbation method. The instability criterion and growth rate relying on obliqueness, superthermality, positive ion thermal pressure, relative ion number density, magnetic field strength, and direction cosines are discussed for five cases. The results are beneficial to understand different nonlinear characteristics of unstable electrostatic disturbances in laboratory and space plasmas.  相似文献   

19.
20.
S BAL  M BOSE 《Pramana》2013,80(4):643-664
The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant in the long wavelength regime even in the presence of dust-neutral and ion-neutral collisions, while in the shorter wavelength regime, the dust-neutral collision is found to play a major role. In an earlier research work, the dust-neutral collision was neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recombination is more important than dust-neutral collisions in laboratory plasma and fusion plasma, while the dust-neutral collision frequency is dominant in the interstellar plasmas. The effects of ion and dust densities and ion streaming on the recombination and collision driven mode in parameter regimes relevant for many experimental studies on dusty plasmas have also been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号