首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

2.
Composite hollow fiber membranes were prepared by a dry-jet wet spinning process using a double layer spinneret. These membranes were composed of a thin and dense outer-layer of poly(ethylene oxide)-containing polyimide and a sponge-like inner layer of other polyimide. The outer layer was responsible for the separation and fabricated as thin as 1 μm. The permeation flux of CO2, RCO2, and the CO2/N2 selectivity decreased 40% and 10–20%, respectively, in a month after the membrane preparation. The steady performance was still high; for example, RCO2=69×10−6cm3 (STP)/(cm2 s cm Hg) and the selectivity of 33 at 323 K.  相似文献   

3.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

4.
Thin film composite (TFC) membranes were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) as a top layer coated onto poly(phthalazinone ether sulfone ketone) (PPESK) ultrafiltration (UF) support membranes. The effects of different preparation conditions such as the SPPESK concentration, organic additives, solvent, degree of substitution (DS) of SPPEK and curing treatment temperature and time on the membrane performance were studied. The SPPESK concentration in the coating solution was the dominant factor for the rejection and permeation flux. The TFC membranes prepared from glycerol as an organic additive show better performance then those prepared from other additives. The rejection increased and the flux decreased with increasing curing treatment temperatures. The salt rejections of the TFC nanofiltration (NF) membranes increased in the order MgCl2 < MgSO4 < NaCl < Na2SO4. TFC membranes showed high water flux at low pressure. SPPESK composite membranes rejections for a 1000 mg L−1 Na2SO4 feed solution was 82%, and solution flux was 68 L m−2 h−1 at 0.25 MPa pressure.  相似文献   

5.
A new technique to prepare a palladium membrane for high-temperature hydrogen permeation was developed: Pd(C3H3)(C5H5) an organometallic precursor reacted with hydrogen at room temperature to decompose into Pd crystallites. This reaction together with sintering treatment under hydrogen and nitrogen in sequence resulted in the formation of dense films of pure palladium on the surface of the mesoporous stainless steel (SUS) support. Under H2 atmosphere the palladium membrane could be sintered at 823 K to form a skin layer inside the support pores. The hydrogen permeance was 5.16×10−2 cm3 cm−2 cm Hg−1 s−1 at 723 K. H2/N2 selectivity was 1600 at 723 K.  相似文献   

6.
Glycerol-based liquid membranes immobilized in the pores of hydrophilic microporous hollow fibers have been studied for selective separation of CO2 from a mixed gas (CO2, N2) feed having low concentrations of CO2 characteristic of gases encountered in space walk and space cabin atmosphere. The immobilized liquid membranes (ILMs) investigated consist of sodium carbonate–glycerol or glycine-Na–glycerol solution. Based on the performances of such liquid membranes in flat hydrophilic porous substrates [Chen et al., Ind. Eng. Chem. Res. 38 (1999) 3489; Chen et al., Ind. Eng. Chem. Res. 39 (2000) 2447], hollow fiber-based ILMs were studied at selected CO2 partial pressure differentials (ΔpCO2 range 0.36–0.50 cmHg), relative humidities (RH range 45–100%), as well as carrier concentrations. The sodium carbonate concentration was primarily 1.0 mol/dm3; the glycine-Na concentration was 3.0 mol/dm3. The sweep gas was always dry helium and it flowed on the shell side. Very high CO2/N2 selectivities were observed with porous polysulfone microfiltration membranes as substrate. As in the case of flat film-based ILMs (see references above), feed side RH is an important factor determining the ILM performances. Generally, lower permeances and greater CO2/N2 selectivity values were observed at lower feed stream RHs. When the feed side average RH=60%, pCO2,f=0.005 atm and glycine-Na concentration was 3.0 M, the CO2/N2 separation factor observed was over 5000. Prolonged runs lasting for 300 h showed that the hollow fiber-based ILM permeation performances were stable.  相似文献   

7.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

8.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid was carried out in order to prepare thermally stable polymers as membrane materials having increased hydrophilicity and potentially improved fouling-resistance. The sulfonated poly(phthalazinone ether sulfone ketone)s (SPPESK) were fabricated into ultrafiltration (UF) and nanofiltration (NF) asymmetric membranes. The effects of SPPESK concentration and the type and concentration of additives in the casting solution on membrane permeation flux and rejection were evaluated by using an orthogonal array experimental design in the separation of polyethyleneglycol (PEG12000 and PEG2000) and Clayton Yellow (CY, MW 695). One UF membrane formulation type had a 98% rejection rate for PEG12000 and a high pure water flux of 867 kg m−2 h−1. All the NF membranes made in the present study had rejections of ≥96%, and one had a high water flux of 160 kg m−2 h−1. Several of the NF membrane formulation types had ∼90% rejection for CY. When the membranes were operated at higher temperatures (80°C), the rejection rates declined slightly and pure water flux was increased more than two-fold. Rejection and flux values returned to previous values when the membranes were operated at room temperature again. Mono- and divalent salt rejections and fluxes were studied on an additional NF membrane set.  相似文献   

9.
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/γ-Al2O3 at temperatures of 800–900 °C. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm−2 min−1. After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm−2 min−1. SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 °C for more than 100 h without failure, with ethane conversion of ∼100%, CO selectivity of >91% and oxygen permeation fluxes of 10–11 ml cm−2 min−1.  相似文献   

10.
A mathematical model was established successfully to analyze the gas separation concentration polarization which becomes an important problem due to the rapid development of membranes, especially the increase of permeation rate. The influences of membrane performance and operation parameters on concentration polarization were studied in terms of permeation fluxes of the more and the less permeable gases and separation factor. Sample calculations were presented for the two typical gas separation applications, hydrogen recovery and air separation, with shell side feed in hollow fiber module. The permeation rate was found to be a dominating factor in affecting concentration polarization, while the influences of separation factor to be significant initially and to level off gradually. Increasing feed gas velocity leads to a decrease in the concentration polarization. Operation pressures' effect is limited and the composition of feed gas shows no effect. The range in which concentration polarization is significant has been identified by studying the combined effects of the permeation rate, separation factor and feed gas velocity. Concentration polarization is important for process analysis and design when the permeation rate of the more permeable gas is larger than 1×10−4 cm3 (STP) cm−2 s−1 cmHg−1 (100 GPU).  相似文献   

11.
The membrane aromatic recovery system (MARS) is a new membrane technology which recovers aromatic acids and bases. The first industrial installation has been operating at a Degussa site in the UK recovering cresols since 2002. The state of the art MARS technology employs a tubular silicone rubber membrane. However, this places some limitations on the process due to relatively low mass transfer rates and limited chemical resistance.In this paper, flat sheet composite membranes were investigated for application to the MARS process. In particular for recovery of compounds, such as 1,2-benzisothiazolin-3-one (BIT) which show low mass transfer rates through the current membrane. These composite membranes are comprised of a thin nonporous PDMS selective layer coated on a microporous support layer cast from polyacrylonitrile, polyvinylidene fluoride, polyetherimide or polyphenylenesulphone. The membranes have been characterised using SEM and gas permeation. The mass transfer of BIT through the composite membranes with no chemical reaction enhancement was an order of magnitude higher than through tubular silicone rubber membranes (10−7 m s−1 versus 10−8 m s−1). With chemical reaction enhancement, the mass transfer increased by another order of magnitude to 1.6 × 10−6 m s−1 for BIT through a PVDF supported composite membrane. Mass transfer through the composite membrane was described well using analysis based on the resistance in series theory with chemical reaction. However, when a high osmotic pressure was applied across the membrane (molarity  3 M), significant water transport occurred across the membrane.  相似文献   

12.
The effect of sulfonated poly(ether ether ketone) (SPEEK) in membrane formation and separation properties has been investigated in polysulfone(PSU)/SPEEK/N-methyl-2-pyrrolidinone (NMP) systems. Charged ultrafiltration/nanofiltration membranes were obtained reliably in the range of 0.5–5 wt.% SPEEK in the polymer blend. All PSU/SPEEK blend membranes had substantially higher water flux, salt rejection, porosity and greatly reduced particle adhesion compared to the PSU base membrane. Further, all of these properties varied systematically with variation of SPEEK content. Reproducibility and stability of the membrane properties was excellent. Pore sizes determined from dextran retention data and AFM measurements showed reasonable agreement. Membranes with 5 wt.% SPEEK demonstrated excellent overall properties. Such membranes had very high permeability, 22.6±1.6×10−11 m3 s−1 N−1, 0.999 fractional rejection of 4000 Da dextran, 0.65 rejection of 0.001 M NaCl, and only 0.75 mN m−1 adhesion of a 4 μm silica particle. Such membranes are very promising for scale-up of production and testing on real process streams.  相似文献   

13.
Pinhole-free palladium/nickel (Pd/Ni) alloy membranes deposited on a porous stainless steel (SUS) support have been fabricated. The deposition was made by vacuum electrodeposition technique which could produce the alloy film less than 1 μm thick. This technique allows for the Pd/Ni alloy by employing Pd/Ni complex reagent, and typical Pd/Ni plating had compositions of 78% Pd and 22% Ni. In order to make the surface smooth and enhance the adhesive bond between the top layer and the substrate, a nascent porous SUS disk was treated sequently with submicron nickel powder and CuCN solution. The important parameters that can affect deposition were pore size, defects, and surface roughness of substrate. The membranes were characterized by permeation experiments with hydrogen and nitrogen at temperatures ranging from 623 to 823 K and pressures from 10.3 to 51.7 cmHg. The composite membranes prepared in this technique yielded excellent separation performance for hydrogen: hydrogen permeance of 5.79×10−2 cm3/cm2 cmHg s and hydrogen/nitrogen (H2/N2) selectivity was 4700 at 823 K.  相似文献   

14.
Polymer membranes with pores with radii in the range of several 10–100 nm were formed by irradiating polyimide foil with highly energetic heavy ions and etching the latent ion tracks with hypochlorite. The aerial density of the pores could be chosen up to an upper limit of 108 pores cm?2, at which too many pores start to overlap. The straight cylindrical pores were tested for their gas permeation and gas separation performance. With a gas mixture of CO and CO2 as model system, gas chromatographic measurements showed that CO penetrates faster through the membrane than CO2, leading to gas separation. This is possible because the mean free path of the molecules is in the order of the pore radius, which is in the transition flow region close to molecular flow conditions.  相似文献   

15.
Chemical vapor deposition (CVD) was used to modify 4 nm pore, sol–gel derived, γ-alumina membranes supported on macroporous α-alumina. Aluminum oxide was deposited in the pores of the γ-alumina membrane by alternating additions of trimethylaluminum (TMA) and water vapor. By reducing the pore size, the permeance of non-condensable gasses was reduced much more than the permeance of condensable gasses due to capillary condensation or preference adsorption of water vapor. The modified membrane that exhibited the best separation properties had a water vapor permeance ranging from 1.5×10−6 to 3.0×10−7 mol/m2 s Pa, an oxygen permeance ranging from 1.7×10−7 to 1.5×10−9 mol/m2 s Pa, and a separation factor as high as 140 at room temperature. The microstructure of the pores contained some irregularities which were attributed to an atomic layer CVD (ALCVD) mechanism modified by homogeneous reactions. The effect of the modified ALCVD was higher permeances than would be expected. P-type zeolite membranes were also made and found to have similar separation properties to the more heavily modified γ-alumina membranes.  相似文献   

16.
We report that 6FDA-2,6-DAT polyimide can be used to fabricate hollow fiber membranes with excellent performances for CO2/CH4 separation. In order to simplify the hollow fiber fabrication process and verify the feasibility of 6FDA-2,6-DAT hollow fiber membranes for CO2/CH4 separation, a new one-polymer and one-solvent spinning system (6FDA-2,6-DAT/N-methyl-pyrrolidone (NMP)) with much simpler processing conditions has been developed and the separation performance of newly developed 6FDA-2,6-DAT hollow fiber membranes has been further studied under the pure and mixed gas systems.Experimental results reveal that 6FDA-2,6-DAT asymmetric composite hollow fiber membranes have a strong tendency to be plasticized by CO2 and suffer severely physical aging with an initial CO2 permeance of 300 GPU drifting to 76 GPU at the steady state. However, the 6FDA-2,6-DAT asymmetric composite hollow fibers still present impressive ultimate stabilized performance with a CO2/CH4 selectivity of 40 and a CO2 permeance of 59 GPU under mixed gas tests. These results manifest that 6FDA-2,6-DAT polyimide is one of promising membrane material candidates for CO2/CH4 separation application.  相似文献   

17.
Low plutonium content acidic waste is generated in nuclear chemical facilities. Study was initiated to develop hollow fiber supported liquid membrane (HFSLM) technique for quantitative separation and recovery of plutonium (Pu) from such wastes using tri-n-butyle phosphate (TBP) in dodecane as carrier. Hollow fiber test module was fabricated using 20 lumens of 33.91 cm2 surface area and 9 cm length. After satisfactory testing of the hydrodynamic condition of the module, it was operated at a flow rate of 3 ml min−1 on recycling mode with acidic waste solution containing Pu=8 mg dm−3, uranium=15 dm−3, gross β=49.33 mCi dm−3, gross γ=15.73 mCi dm−3 and acidity 3 M HNO3. In presence of various fission products, selective permeation of Pu(IV) through the bundle of hollow fiber test module was observed to be more than 90% into a stripping phase consisting 0.1 M NH2OH·HCl in 0.3 M HNO3. A model is presented to describe the transport mechanism and to evaluate the mass transfer coefficient. The radiation stability was also tested by exposing the membrane upto irradiation level of 1 M rad. Potentiality of the method for the selective separation of plutonium from acidic waste is, thus, clearly seen.  相似文献   

18.
Tetrahydrofuran (THF) is a strong aprotic solvent, commonly used in the pharmaceuticals industry due to its broad solvency for both polar and non-polar compounds. THF and water form a homogeneous azeotrope at 5.3 wt.% water thus simple distillation is not feasible to dehydrate THF below this concentration. Pervaporation offers a solution since it is not governed by vapour–liquid equilibria. However many polymer-based pervaporation membranes are cast utilizing THF as the casting solvent and so these membranes have a tendency to swell excessively in its presence. This results in poor separation performance and poor long-term stability and thus renders these membranes unsuitable for THF dehydration.In this study, a new membrane available from CM Celfa, CMC-VP-31 has been tested for the dehydration of THF. The membrane shows excellent performance when dehydrating THF with a flux of over 4 kg m−2 h−1 when dehydrating THF containing 10 wt.% water at 55 °C dropping to 0.12 kg m−2 h−1 at a water content of 0.3 wt.%. The permeances of water and THF in the membrane were calculated to be 11.76 × 10−6 and 7.36 × 10−8 mol m−2 s−1 Pa−1, respectively, at 25 °C and found to decrease in the membrane with increasing temperature to values of 6.71 × 10−6 and 1.63 × 10−8 mol m−2 s−1 Pa−1 at 55 °C. The flux and separation factor were both found to increase with an increase in temperature thus favouring the operation of CMC-VP-31 at high temperatures to optimize separation performance.  相似文献   

19.
Catalytic reduction of CO2 (saturated in organic polar solvents, e.g. N,N-dimethylfomamide, containing Me4NX or NaBF4) was achieved at smooth gold electrodes and at glassy carbon electrodes galvanostatically capped with a thin layer of gold. Under these quite explicit conditions, very sharp reduction steps were observed near − 1.5 V vs. Ag/AgCl. With small cations listed above, an unexpected behavior was observed, a progressive electrode inhibition occurring upon several scans or after a fixed-potential electrolysis at E <  1.7 V. This phenomenon could be attributed to the insertion of CO2 into gold, leading to the formation of a thick iono-metallic multi-strata layer (less conducting than pure metal) that grows with the electrode charge. The formation of this new interface is due to the concur of three elements: transient CO2 anion radical, the metal, and rather small-sized cations (M+ = Na+ or TMA+), the three possibly associated in a form {Au-CO2,M+} apparently very reactive with oxygen, moisture, and with some organic π-acceptors. Upon multi-scans up to − 2.2 V, the thickness of formed layer progressively increases reaching more than 10 7 to 10 6 mol cm 2. Such multi-layers undergo decomposition in the anodic domain at about + 1.7 V liberating CO2 beforehand trapped in Au. Coulometric analyses demonstrated that insertion (cathodic) and release (anodic) steps are quite equivalent, which permits to consider this process as chemically reversible sequestration of carbon dioxide.  相似文献   

20.
We have determined the intrinsic gas transport properties of He, H2, O2, N2, CH4, and CO2 for a 6FDA-durene polyimide as a function of pressure, temperature and aging time. The permeability coefficients of O2, N2, CH4, and CO2 decrease slightly with increasing pressure. The pressure-dependent diffusion coefficients and solubility coefficients are consistent with the dual-sorption model and partial immobilization. All the gas permeabilities increase with temperature and their apparent activation energies for permeation increase with increasing gas molecular sizes in the order of CO2, O2, N2, and CH4.The percentages of permeability decay after 280 days of aging are 22, 32, 36, 40, 42, and 30% for He, H2, O2, N2, CH4, and CO2, respectively. Interestingly, except for H2 (kinetic diameter of 2.89 Å), the percentages of permeability decay increase exactly in the order of He (kinetic diameter of 2.6 Å), CO2 (3.30 Å), O2 (3.46 Å), N2 (3.64 Å), and CH4 (3.80 Å). The apparent activation energies of permeation for O2, N2, CH4, and CO2 increase with aging because of the increases in activation energies of diffusion and the decreases in solubility coefficients. The activation-energy increase for diffusion is probably due to the decrease in polymeric molar volume because of densification during aging. The reduction in solubility coefficient indicates the available sites for sorption decreasing with aging because of the reduction of microvoids and interstitial chain space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号