首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fluid Phase Equilibria》2002,193(1-2):109-121
Isothermal vapor–liquid equilibrium (VLE) data at 353.15 K and excess molar volumes (VE) at 298.15 K are reported for the binary systems of ethyl acetate (EA)+cyclohexane and EA+n-hexane and also for the ternary systems of EA+cyclohexane+2-methyl pyrazine (2MP) and EA+n-hexane+2MP. The experimental binary VLE data were correlated with common gE model equations. The correlated Wilson parameters of the constituent binary systems were used to calculate the phase behavior of the ternary mixtures. The calculated ternary VLE data using Wilson parameters were compared with experimental ternary data. The experimental excess molar volumes were correlated with the Redlich–Kister equation for the binary mixtures, and Cibulka’s equation for the ternary mixtures.  相似文献   

2.
《Fluid Phase Equilibria》1997,135(1):51-61
Total vapour pressure measurements made by the modified static method for the quaternary system cyclohexane + hexane + acetone + methanol at 313.15 K are presented in addition to previously published data for the constituent binary and ternary systems. The different expressions for GE suitable for prediction of the quaternary VLE from constituent binaries are studied.  相似文献   

3.
《Fluid Phase Equilibria》1998,152(2):243-254
Molar excess enthalpies, HE, at 303.15 K and atmospheric pressure, of n-propyl-, n-butyl-, n-pentyl-, n-octyl- or n-decylamine+toluene, as well as the isothermal vapour–liquid equilibria, VLE, of n-butylamine+toluene and of n-butylamine+benzene at 298.15 K have been determined. These experimental results, along with the data available in the literature on molar excess Gibbs energies, GE, activity coefficients at infinite dilution, γi, and molar excess enthalpies, HE, for n-alkylamine+toluene mixtures are examined on the basis of the DISQUAC group contribution model. The modified UNIFAC is also used to describe the mixtures.  相似文献   

4.
Total vapour pressure measurements made by the modified static method for the ternary systems methanol-chloroform-acetone and constituent binaries at 313.15 and 323.15 K are presented. The different expressions of GE suitable for correlation of these data are tested. A prediction of ternary VLE from binary data is examined. The possibility of predicting the binary and ternary VLE at one temperature using VLE data at another temperature and HE data is investigated. Accuracy of prediction of HE from two (P, x) isotherms is also studied. Our results are compared with literature data.  相似文献   

5.
6.
《Fluid Phase Equilibria》1996,126(1):71-92
Total vapour pressure measurements made by the modified static method for the ternary system cyclohexanemethanolacetone and all the constituent binary systems at 293.15 and 303.15 K are presented. The alcohol high-dilution region of the cyclohexanemethanol system has been thoroughly studied. Different exprerssions for GE suitable for correlation of these data are tested. The prediction of ternary VLE from the constituent binaries is studied. The accuracy of the prediction of HE from two (P, x) isotherms is studied for the binary systems. The possibility of predicting the ternary HE from VLE isotherms is also. Our results are compared with literature data.  相似文献   

7.
《Fluid Phase Equilibria》2004,217(2):157-164
Experimental isothermal Px data at T=313.15 K for the binary systems 1,1-dimethylethyl methyl ether (MTBE)+n-hexane and methanol+n-hexane, and the ternary system MTBE+methanol+n-hexane are reported. Data reduction by Barker’s method provides correlations for GE using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems. Moreover, we compare the experimental results for these binary mixtures to the prediction of the UNIFAC (Dortmund) model. Experimental results have been compared to predictions for the ternary system obtained from the Wilson, NRTL, UNIQUAC and UNIFAC models; for the ternary system, the UNIFAC predictions seem poor. The presence of azeotropes in the binary systems has been studied.  相似文献   

8.
《Fluid Phase Equilibria》2004,224(2):169-183
Systems of N,N di(n-alkylamides) (hereafter, N,N-dialkylamides) with alkane, benzene, toluene, 1-alkanol or 1-alkyne have been investigated in the framework of the DISQUAC model. The corresponding interaction parameters are reported. They change regularly with the molecular structure of the mixture components. This variation is similar to those encountered when treating other systems in terms of DISQUAC. The model describes consistently a whole set of thermodynamic properties: liquid–liquid equilibria (LLE), vapor–liquid equilibria (VLE), solid–liquid equilibria (SLE), molar excess Gibbs energies (GE), molar excess enthalpies (HE), molar excess heat capacities at constant pressure (CPE), partial molar excess properties at infinite dilution, enthalpies and heat capacities. The model also provides good results for the Kirkwood–Buff integrals and for the linear coefficients of preferential solvation. For ternary systems, DISQUAC predictions on VLE and HE, obtained using binary parameters only, are in good agreement with the experimental data. A short comparison between DISQUAC and Dortmund UNIFAC results is shown. DISQUAC improves UNIFAC results on HE and CPE, magnitudes which strongly depend on the molecular structure. The investigated mixtures behave similarly to those characterized by thermodynamic properties which arise from dipolar interactions. Association/solvation effects do not play, as a whole, an important role in the studied systems. This may explain that the ERAS model fails when representing the thermodynamic properties of dimethylformamide + 1-alkanol mixtures.  相似文献   

9.
《Fluid Phase Equilibria》1998,152(2):283-298
The results of excess molar volumes for ternary mixture N,N-dimethylformamide (DMF)+1-propanol+water and for binary constituents, DMF+water, DMF+1-propanol and 1-propanol+water at 298.15 K are reported. Several empirical expressions were used to predict and correlate the ternary excess molar volumes from experimental results on the constituent binaries. A pseudo-binary mixture approach (PBMA) was used to analyze the system studied. The partial molar volumes of 1-propanol at infinite dilution in [fmDMF+(1−fm)water] mixed solvents at their several fixed composition fm were evaluated and correlated with the composition fm.  相似文献   

10.
11.
Vapor liquid equilibrium (VLE) is successfully predicted from excess enthalpy HE data for binary ether + n-alkane or cyclohexane mixtures. Parameters for the continuous linear association model (CLAM) and for the UNIQUAC Model for the excess Gibbs energy GE were determined from HE data measured at a low temperature (ambient temperature). These parameters are used to predict VLE data at low and high temperatures. The dependence of the accuracy of predictions on the set of HE data chosen to evaluate the parameters and on the model for GE are discussed.  相似文献   

12.
《Fluid Phase Equilibria》1986,26(2):181-200
Nigam, R.K. and Aggarwal, S., 1986. Thermodynamic and spectroscopic evidence in binary mixtures of nonelectrolytes. Fluid Phase Equilibria, 26: 181–200.Molar excess enthalpies HEm of 1,2-dichloroethane (1)+pyridine (2), + α-picoline (2),+n-hexane (2), +n-heptane (2), n-heptane (1)+pyridine (2), +α-picoline (2), +γ-picoline (2), aniline (1)+pyridine 92), +α-picoline (2) and +γ-picoline (2) mixtures have been measured calorimetrically at 298.15 and 308.15 K.The data have been examined in terms of the Lacombe and Sanchez theory and the graph theoretical approach. It was found that these were described better by the graph theoretical approach. The NMR studies on 1,2-dichloroethane (1)+α-picoline (2), aniline (1)+pyridine (2) and aniline (1)+γ-picoline (2) mixtures have also been used to lend credence to the nature and extent of interaction in these mixtures.  相似文献   

13.
《Fluid Phase Equilibria》2002,202(2):277-287
Using gas liquid chromatography, activity coefficients for nine solutes at infinite dilution (γi) in stationary solvent of formamide + glucose, + fructose and + sucrose at 298.15 K have been measured. Linear dependence of ln γi on the mole fraction of sugar was observed.  相似文献   

14.
《Fluid Phase Equilibria》1999,165(2):197-208
Experimental isothermal Px data at 313.15 K for the ternary system (tert-amylmethyl ether (TAME)+n-heptane+methanol) and for one of the unmeasured constituent binary systems, (tert-amylmethyl ether (TAME)+methanol) are reported. Data reduction by Barker's method provides correlations for gE using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems. The presence of azeotropes in the ternary system and constituent binaries are studied as well as the presence of immiscible zones.  相似文献   

15.
Vapour–liquid equilibria and densities for the ternary system chloroform + tetrahydrofuran + cyclohexane and for the binary mixtures containing chloroform have been determined at 298.15 K. Vapour–liquid equilibrium data have been collected by head-space gas-chromatographic analysis of the vapour phase directly withdrawn from an equilibration apparatus. Density measurements have been carried out by means of a vibrating tube densimeter. Molar excess Gibbs energies GE and volumes VE, as well as activity coefficients and apparent molar volumes of the components, have been obtained from the measured quantities and discussed. The binary chloroform + tetrahydrofuran displays negative deviations from ideality, while chloroform + cyclohexane positive deviations, for both volume and Gibbs energy. The GE's and VE's for the ternary system are positive in the region rich in cyclohexane while negative in the region rich in chloroform + tetrahydrofuran. This indicates that hydrogen bonding between chloroform and tetrahydrofuran molecules produces negative values of GE and VE and strongly influences the behaviour of the ternary system.  相似文献   

16.
《Fluid Phase Equilibria》2004,218(2):165-175
Vapor–liquid equilibria (VLE) of binary mixtures containing the high boiling solutes: nonan-1-al, 4-methyl-benzaldehyde, nonan-2-one, and 4-phenylbutan-2-one and the ionic liquid (IL) [EMIM][NTf2] were studied by using the transpiration method. VLE measurements were carried out over the whole concentration range at different temperatures between 298 and 323 K. Activity coefficients γi of these solvents in the ionic liquid have been determined from these data using the NRTL-equation. In addition vapor pressures of the pure solutes 4-methyl-benzaldehyde, nonan-2-one and 4-phenylbutan-2-one have been measured as function of temperature and their enthalpies of vaporization have been obtained.  相似文献   

17.
《Fluid Phase Equilibria》1996,118(2):227-240
Densities, ϱ, and speeds of sound, u, have been measured for the ternary mixture {benzene + cyclohexane + hexane} and the corresponding binary mixtures {benzene + cyclohexane}, {benzene + hexane} and {cyclohexane + hexane}, at the temperature 298.15 K. Using these results, the isentropic compressibilities, κs, the excess isentropic compressibilities, κsE, and the speeds of sound deviations, Δu, have been calculated for both the binary mixtures and the ternary system. Excess isentropic compressibilities, κsE, and the speeds of sound deviations, Δu, have been fitted to the Redlich-Kister equation in the case of binary mixtures, while the equation of Cibulka was used to fit the values relating to the ternary system. The empiric equations of Redlich-Kister, Tsao-Smith, Kohler and Colinet have been applied in order to predict the κsE and Δu of ternary mixtures from the binary contributions.  相似文献   

18.
《Fluid Phase Equilibria》2005,227(2):255-266
For the first time vapor–liquid equilibrium (VLE) data for ternary systems containing ionic liquids are reported. The data were measured by means of a computer-operated static VLE apparatus at 353.15 K with the ionic liquids 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [EMIM]+[(CF3SO2)2N] and 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [BMIM]+[(CF3SO2)2N] and acetone, 2-propanol and water. The experimental VLE data of the binary systems were correlated using the Wilson, NRTL and UNIQUAC models. The errors using Wilson, NRTL, and UNIQUAC are 3.92%, 1.45%, and 1.53%. The gE-model parameters of the binary systems were used to predict the VLE behavior of the ternary systems and the predictions were compared to the experimental datasets. The errors using Wilson-, NRTL-, and UNIQUAC-parameters are 5.61%, 7.22%, and 5.02%.  相似文献   

19.
The excess molar volumes, V mE, viscosity deviations, Δη, and excess Gibbs energies of activation, ΔG *E, of viscous flow have been investigated from density and viscosity measurements for two ternary mixtures, 1-butanol + triethylamine + cyclohexane and 1-pentanol + triethylamine + cyclohexane, and corresponding binaries at 303.15 K and atmospheric pressure over the entire range of composition. The empirical equations due to Redlich-Kister, Kohler, Rastogi et al., Jacob-Fitzner, Tsao-Smith, Lark et al., Heric-Brewer, and Singh et al. have been employed to correlate V mE, Δη and ΔG *E of the ternary mixtures with their corresponding binary parameters. The results are discussed in terms of the molecular interactions between the components of the mixture. Further, the Extended Real Associated Solution, ERAS, model has been applied to V mE for the present binary and ternary mixtures, and the results are compared with experimental data.  相似文献   

20.
Excess enthalpies (HE), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The HE values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (GE). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号