首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The paper describes an objective function hyperplane search heuristic for solving the general all-integer linear programming problem (ILP). The algorithm searches a series of objective function hyperplanes and the search over any given hyperplane is formulated as a bounded knapsack problem. Theory developed for combinations of the objective function and problem constraints is used to guide the search. We evaluate the algorithm's performance on a class of ILP problems to assess the areas of effectiveness.  相似文献   

2.
We propose a general-purpose algorithm APS (Adaptive Pareto-Sampling) for determining the set of Pareto-optimal solutions of bicriteria combinatorial optimization (CO) problems under uncertainty, where the objective functions are expectations of random variables depending on a decision from a finite feasible set. APS is iterative and population-based and combines random sampling with the solution of corresponding deterministic bicriteria CO problem instances. Special attention is given to the case where the corresponding deterministic bicriteria CO problem can be formulated as a bicriteria integer linear program (ILP). In this case, well-known solution techniques such as the algorithm by Chalmet et al. can be applied for solving the deterministic subproblem. If the execution of APS is terminated after a given number of iterations, only an approximate solution is obtained in general, such that APS must be considered a metaheuristic. Nevertheless, a strict mathematical result is shown that ensures, under rather mild conditions, convergence of the current solution set to the set of Pareto-optimal solutions. A modification replacing or supporting the bicriteria ILP solver by some metaheuristic for multicriteria CO problems is discussed. As an illustration, we outline the application of the method to stochastic bicriteria knapsack problems by specializing the general framework to this particular case and by providing computational examples.  相似文献   

3.
This paper discusses a class of nonlinear knapsack problems where the objective function is quadratic. The method is a branch and search procedure which includes an efficient algorithm to find the continuous (relaxed) solution and a reduction rule which computes tight lower and upper bounds on the integer variables.  相似文献   

4.
切割定界与整数分枝结合求解整数线性规划   总被引:2,自引:0,他引:2  
把一种改进的割平面方法和分枝定界的思想结合起来求解整数线性规划 ( ILP)问题 .它利用目标函数等值面的移动来切去相应 ( LP)的可行域中含其非整数最优解但不含 ( ILP)可行解的“无用部分”,并将对应的目标函数值作为 ( ILP)目标最优值的一个上界 ;最后 ,通过 ( LP)最优解中非整数基变量的整数分枝来获得整数线性规划的最优解 .  相似文献   

5.
This paper presents an efficient solution algorithm for the multiconstraint zero-one knapsack problem through a branch and bound search process. The algorithm has been coded in FORTRAN; and a group of thirty 5-constraint knapsack problems with 30-90 variables were run on IBM 360/75 using two other codes as well, in order to compare the computational efficiency of the proposed method with that of the original Balas and an improved Balas additive algorithms. The computational results show that the proposed method is markedly faster with regard to the total as well as the individual solution times for these test problems, and such superiority becomes more evident as the number of variables and the difficulty of the problems increase. The results also indicated that the original Balas method is extremely inefficient for the type of problems being considered here. The total solution time for the thirty problems is 13 min for the proposed method, 109 min for the improved Balas algorithm, and over 380 min for the original Balas algorithm. Extension of the solution algorithm to the generalized knapsack problem is also suggested.  相似文献   

6.
The nonlinear knapsack problem, which has been widely studied in the OR literature, is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to separable nondecreasing constraints. In this paper we develop a convergent Lagrangian and domain cut method for solving this kind of problems. The proposed method exploits the special structure of the problem by Lagrangian decomposition and dual search. The domain cut is used to eliminate the duality gap and thus to guarantee the finding of an optimal exact solution to the primal problem. The algorithm is first motivated and developed for singly constrained nonlinear knapsack problems and is then extended to multiply constrained nonlinear knapsack problems. Computational results are presented for a variety of medium- or large-size nonlinear knapsack problems. Comparison results with other existing methods are also reported.  相似文献   

7.
本文对线性约束不可分离凸背包问题给出了一种精确算法.该算法是拉格朗日分解和区域分割结合起来的一种分枝定界算法.利用拉格朗日分解方法可以得到每个子问题的一个可行解,一个不可行解,一个下界和一个上界.区域分割可以把一个整数箱子分割成几个互不相交的整数子箱子的并集,每个整数子箱子对应一个子问题.通过区域分割可以逐步减小对偶间隙并最终经过有限步迭代找到原问题的最优解.数值结果表明该算法对不可分离凸背包问题是有效的.  相似文献   

8.
In this paper we study a particular version of the stochastic knapsack problem with normally distributed weights: the two-stage stochastic knapsack problem. Contrary to the single-stage knapsack problem, items can be added to or removed from the knapsack at the moment the actual weights become known (second stage). In addition, a chance-constraint is introduced in the first stage in order to restrict the percentage of cases where the items chosen lead to an overload in the second stage. To the best of our knowledge, there is no method known to exactly evaluate the objective function for a given first-stage solution. Therefore, we propose methods to calculate the upper and lower bounds. These bounds are used in a branch-and-bound framework in order to search the first-stage solution space. Special interest is given to the case where the items have similar weight means. Numerical results are presented and analyzed.  相似文献   

9.
Connectedness of efficient solutions is a powerful property in multiple objective combinatorial optimization since it allows the construction of the complete efficient set using neighborhood search techniques. However, we show that many classical multiple objective combinatorial optimization problems do not possess the connectedness property in general, including, among others, knapsack problems (and even several special cases) and linear assignment problems. We also extend known non-connectedness results for several optimization problems on graphs like shortest path, spanning tree and minimum cost flow problems. Different concepts of connectedness are discussed in a formal setting, and numerical tests are performed for two variants of the knapsack problem to analyze the likelihood with which non-connected adjacency graphs occur in randomly generated instances.  相似文献   

10.
Integer linear programming (ILP) problems occur frequently in many applications. In practice, alternative optima are useful since they allow the decision maker to choose from multiple solutions without experiencing any deterioration in the objective function. This study proposes a general integer cut to exclude the previous solution and presents an algorithm to identify all alternative optimal solutions of an ILP problem. Numerical examples in real applications are presented to demonstrate the usefulness of the proposed method.  相似文献   

11.
In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.  相似文献   

12.
This paper develops exact and heuristic algorithms for a stochastic knapsack problem where items with random sizes may be assigned to a knapsack. An item’s value is given by the realization of the product of a random unit revenue and the random item size. When the realization of the sum of selected item sizes exceeds the knapsack capacity, a penalty cost is incurred for each unit of overflow, while our model allows for a salvage value for each unit of capacity that remains unused. We seek to maximize the expected net profit resulting from the assignment of items to the knapsack. Although the capacity is fixed in our core model, we show that problems with random capacity, as well as problems in which capacity is a decision variable subject to unit costs, fall within this class of problems as well. We focus on the case where item sizes are independent and normally distributed random variables, and provide an exact solution method for a continuous relaxation of the problem. We show that an optimal solution to this relaxation exists containing no more than two fractionally selected items, and develop a customized branch-and-bound algorithm for obtaining an optimal binary solution. In addition, we present an efficient heuristic solution method based on our algorithm for solving the relaxation and empirically show that it provides high-quality solutions.  相似文献   

13.
Quadratic knapsack problem has a central role in integer and nonlinear optimization, which has been intensively studied due to its immediate applications in many fields and theoretical reasons. Although quadratic knapsack problem can be solved using traditional nonlinear optimization methods, specialized algorithms are much faster and more reliable than the nonlinear programming solvers. In this paper, we study a mixed linear and quadratic knapsack with a convex separable objective function subject to a single linear constraint and box constraints. We investigate the structural properties of the studied problem, and develop a simple method for solving the continuous version of the problem based on bi-section search, and then we present heuristics for solving the integer version of the problem. Numerical experiments are conducted to show the effectiveness of the proposed solution methods by comparing our methods with some state of the art linear and quadratic convex solvers.  相似文献   

14.
In this study, we consider the nadir points of multiobjective integer programming problems. We introduce new properties that restrict the possible locations of the nondominated points necessary for computing the nadir points. Based on these properties, we reduce the search space and propose an exact algorithm for finding the nadir point of multiobjective integer programming problems. We present an illustrative example on a three objective knapsack problem. We conduct computational experiments and compare the performances of two recent algorithms and the proposed algorithm.  相似文献   

15.
We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments.  相似文献   

16.
We study a variation of the knapsack problem in which each item has a profit, a weight and a penalty; the sum of profits of the selected items minus the largest penalty associated with the selected items must be maximized. We present an ILP formulation and an exact optimization algorithm.  相似文献   

17.
We propose an Integer Linear Programming (ILP) approach for solving integer programs with bilinear objectives and linear constraints. Our approach is based on finding upper and lower bounds for the integer ensembles in the bilinear objective function, and using the bounds to obtain a tight ILP reformulation of the original problem, which can then be solved efficiently. Numerical experiments suggest that the proposed approach outperforms a latest iterative ILP approach, with notable reductions in the average solution time.  相似文献   

18.
The multiple-choice knapsack problem is a binary knapsack problem with the addition of disjoint multiple-choice constraints. We describe a branch and bound algorithm based on embedding Glover and Klingman's method for the associated linear program within a depth-first search procedure. A heuristic is used to find a starting dual feasible solution to the associated linear program and a ‘pegging’ test is employed to reduce the size of the problem for the enumeration phase. Computational experience and comparisons with the code of Nauss and an algorithm of Armstrong et al. for the same problem are reported.  相似文献   

19.
We designed and implemented an algorithm to solve the continuos right hand side multiparametric Integer Linear Programming (ILP) problem, that is to solve a family of ILP problems in which the problems are related by having identical objective and matrix coefficients. Our algorithm works by choosing an appropiate finite sequence of nonparametric Mixed Integer Linear Programming (MILP) problems in order to obtain a complete multiparametrical analysis. The algorithm may be implemented by using any software capable of solving MILP problems.  相似文献   

20.
We investigate the problem of finding the nadir point for multiobjective discrete optimization problems (MODO). The nadir point is constructed from the worst objective values over the efficient set of a multiobjective optimization problem. We present a new algorithm to compute nadir values for MODO with \(p\) objective functions. The proposed algorithm is based on an exhaustive search of the \((p-2)\)-dimensional space for each component of the nadir point. We compare our algorithm with two earlier studies from the literature. We give numerical results for all algorithms on multiobjective knapsack, assignment and integer linear programming problems. Our algorithm is able to obtain the nadir point for relatively large problem instances with up to five-objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号