首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
姜云国  黄永畅 《中国物理 C》2006,30(12):1151-1155
用Faddeev-Senjanovic量子化方法对超对称电动力学系统在一般情况下进行了量子化, 得到了格林函数的生成泛函. 通过对一些约束作线性组合获得了另一个第一类约束, 构造出了该体系的规范生成元, 导出了该系统的规范不变的对称变. 由一个规范条件的自恰性导出了另一个规范条件, 发现超对称电动力学系统的次级第一类约束对应物理电荷守恒律, 从而使过去要算很多次级约束才能截断的约束自然截断, 因而使超对称电动力学系统在一般情况下的Faddeev-Senjanovic量子化被简化.  相似文献   

2.
In the framework of Faddeev-Senjanovic (FS) path-integral quantization, CP 1 nonlinear σ model coupled to Non-Abelian Chern-Simons (CS) fields is quantized. Generalized canonical Ward identities (WI) are deduced from the invariance of the canonical effective action under gauge transformations, which are obtained from the generators of gauge transformations, including all first-class constraints, in Dirac’s sense. The generalized canonical WI has brief form and is equivalent to canonical WI under gauge transformations in Dirac’s sense. This project is supported by Foundation of National Natural Science (10671086), Foundation of Shandong Natural Science (Y2007A01) and National Laboratory for Superlattices and Microstructures (CHJG200605).  相似文献   

3.
《Physics letters. [Part B]》1999,458(4):499-504
We consider the pair of degenerate compatible antibrackets satisfying a generalization of the axioms imposed in the triplectic quantization of gauge theories. We show that these data encode a Lie group structure such that the antibrackets are related to the left- and right- invariant vector fields on the group. Conversely, every Lie group admits a “triplectic bundle.” The standard triplectic quantization axioms then correspond to Abelian Lie groups.  相似文献   

4.
The free massless Rarita-Schwinger equation and a recently constructed interacting field theory known as supergravity are invariant under fermionic gauge transformations. Gauge field quantization techniques are applied in both cases. For the free field the Faddeev-Popov ansatz for the generating functional is justified by showing that it is equivalent to canonical quantization in a particular gauge. Propagators are obtained in several gauges and are shown to be ghost-free and causal. For supergravity the Faddeev-Popov ansatz is presented and the gauge fixing and determinant terms are discussed in detail in a Lorentz covariant gauge. The Slavnov-Taylor identity is obtained. It is argued that supergravity theory is free from the difficulty of acausal wave propagation of the type found by Velo and Zwanziger and that pole residues in tree approximation S-matrix elements are positive as required by unitarity.  相似文献   

5.
Based on algebraic dynamics, we present an algorithm to obtain exact solutions of the Schrodinger equation of non-autonomous quantum systems with Hamiltonian expressed in quadratic function of creation and annihilation operators of bosons. The Hamiltonian is treated as a linear function of generators of a symplectic group. Similar to the canonical transformation of classical dynamics, we employ a set of gauge transformations to gradually transform the Hamiltonian to a linear function of Cartan operators. The exact solutions are obtained by inverse gauge transformations. When the system is autonomous, this algorithm can obtain the normal mode of the Hamiltonian, as well as the eigenstates and eigenvalues.  相似文献   

6.
The canonical quantization formalism is applied to the Lagrange density of chromodynamics, which includes gauge fixing and Faddeev-Popov ghost terms in a general covariant gauge. We develop the quantum theory of the interacting fields in the Dirac picture, based on the Gell-Mann and Low theorem and the Dyson expansion of the time evolution operator. The physical states are characterized by their invariance under Becchi-Rouet-Stora transformations. Subsequently, confinement is introduced phenomenologically by imposing, on the quark, gluon, and ghost field operators, the linear boundary conditions of the MIT bag model at the surface of a spherically symmetric and static cavity. Based on this formalism, we calculate, in the Feynman gauge, all nondivergent Feynman diagrams of second order in the strong coupling constantg. Explicit values of the matrix elements are given for low-lying quark and gluon cavity modes.  相似文献   

7.
The generalization of a triplectic quantization scheme of gauge theories is considered for the case where the reference space is an arbitrary super-Poisson one.  相似文献   

8.
The three fundamental geometric components of Yang-Mills theory –gauge field, gauge fixing and ghost field– are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection’s curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field’s standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov’s obstruction.  相似文献   

9.
We consider the general gauge theory with a closed irreducible gauge algebra possessing the non-anomalous global (super)symmetry in the case when the gauge fixing procedure violates the global invariance of classical action. The theory is quantized in the framework of BRST-BV approach in the form of functional integral over all fields of the configuration space. It is shown that the global symmetry transformations are deformed in the process of quantization and the full quantum action is invariant under such deformed global transformations in the configuration space. The deformed global transformations are calculated in an explicit form in the one-loop approximation.  相似文献   

10.
We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)- dimensional (2D) gauge field theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and ψ). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level.  相似文献   

11.
The Hamilton-Jacobi method of constrained systems is discussed. The equations of motion for a singular system with time dependent constraints are obtained as total differential equations in many variables. The integrability conditions for the relativistic particle in a plane wave lead us to obtain the canonical phase space coordinates without using any gauge fixing condition. As a result of the quantization, we get the Klein-Gordon theory for a particle in a plane wave. The path integral quantization for this system is obtained using the canonical path integral formulation method.  相似文献   

12.
By abstracting a connection between gauge symmetry and gauge identity on a noncommutative space, we analyse star (deformed) gauge transformations with the usual Leibniz rule as well as undeformed gauge transformations with a twisted Leibniz rule. Explicit structures of the gauge generators in either case are computed. It is shown that, in the former case, the relation mapping the generator with the gauge identity is a star deformation of the commutative space result. In the latter case, on the other hand, this relation gets twisted to yield the desired map.  相似文献   

13.
We present a general framework for manifestly-covariant canonical formulation of Poincaré gauge theories. We construct a general class of action that is invariant under two kinds of BRS transformations—translation and internal Lorentz—and suitable for manifestly-covariant canonical quantization. This theory contains a great number of conserved quantities, which we investigate systematically. It is also pointed out that a canonical formulation of higher-derivative theories may be obtained as a limiting case in this framework.  相似文献   

14.
S. Jo 《Nuclear Physics B》1985,259(4):616-636
Commutators among non-abelian fermion currents are calculated using the BJL limit. The relation between the covariant seagull and the gauge dependence of the fermion current is derived for a canonical non-abelian theory using the path integral formulation. We observe that in a non-abelian theory with coupling to chiral fermions this relation is violated and this produces a non-trivial commutator of gauge group generators.  相似文献   

15.
Recent attempts at geometric interpretations of Feynman-De Witt-Faddeev-Popov ghosts and Becchi-Rouet-Stora symmetries of gauge theories are reviewed critically, and an interpretation in terms of the infinite-dimensional group of gauge transformations is restated. This interpretation seems adequate both in the path-integral approach and in canonical quantization with indefinite metric.  相似文献   

16.
The prevailing theoretical quark and gluon momentum, orbital angular momentum and spin operators, satisfy either gauge invariance or the corresponding canonical commutation relation, but one never has these operators which satisfy both except the quark spin. The conflicts between gauge invariance and the canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. To achieve such a proper decomposition the key point is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics, and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

17.
A (1+1) dimensional model where vector and axial vector interaction get mixed up with different weight is considered with a generalized masslike term for gauge field. Through Poincaré algebra it has been made confirm that only a Lorentz covariant masslike term leads to a physically sensible theory as long as the number of constraints in the phase space is two. With that admissible masslike term, phase space structure of this model with proper identification of physical canonical pair has been determined using Diracs’ scheme of quantization of constrained system. The bosonized version of the model remains gauge non-invariant to start with. Therefore, with the inclusion of appropriate Wess-Zumino term it is made gauge symmetric. An alternative quantization has been carried out over this gauge symmetric version to determine the phase space structure in this situation. To establish that the Wess-Zumino fields allocates themselves in the un-physical sector of the theory an attempts has been made to get back the usual theory from the gauge symmetric theory of the extended phase-space without hampering any physical principle. It has been found that the role of gauge fixing is crucial for this transmutation.  相似文献   

18.
《Physics letters. [Part B]》1986,167(2):225-228
The explicit regularization of the Weyl fermion current leading to the anomalous commutation relation of the Gauss law constraint is established. This requires the modification of the canonical quantization of the corresponding gauge model. The modified form of functional integral quantization for this model is proposed.  相似文献   

19.
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

20.
《Physics letters. [Part B]》1987,195(3):369-376
The problem of quantization of superstrings is traced back to the nilpotency of gauge generators of the first-generation ghosts. The quantization of such theories is performed. The novel feature of this quantization is the freedom in choosing the number of ghost generations as well as gauge conditions. As an example, we perform the quantization of the heterotic string in a gauge that preserves spacetime supersymmetry. The equations of motion are those of a free theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号