首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A near stoichiometric LiNbO3 single crystal has been grown by the Czochralski method from a 58.5% Li melt hold in a large platinum crucible. High resolution X‐ray rocking curves of 30 0 and 0006 reflections indicated that the near stoichiometric LiNbO3 crystal possesses the high structural quality. Compared with the congruent LiNbO3, the near stoichiometric LiNbO3 possesses shorter ultraviolet absorption edge, thus higher Li concentration. The OH infrared absorption band analyses showed that the Li concentration in the near stoichiometric LiNbO3 crystal is higher than that in the congruent LiNbO3 crystal. This result is in good agreement with that of the ultraviolet absorption edge. The electro‐optic (EO) coefficient γ22 of the near stoichiometric LiNbO3 crystal was measured to be 6.75 pm/V higher than that of congruent LiNbO3 crystal. It also proves the near stoichiometric LiNbO3 electro‐optic Q‐switched requires a low driving voltage and it is advantageous for the device performance. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Near‐stoichiometric Mn:Fe:LiNbO3 crystals doped with various concentration of ZrO2 were grown by top seed solution growth (TSSG) method in the air atmosphere. The Zr concentration in the crystal was determined by inductively coupled plasma optical emission spectrometer. The defect structures were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of vibration peak at 3466 cm‐1 in infrared spectra manifested that Li/Nb ratio in crystals approached to stoichiometric proportion. The fundamental absorption edge represented continuous red‐shift which was discrepancy with congruent doped LiNbO3 crystals showed that doping ions possessed different location mechanism. The light‐induced scattering of the doped stoichiometric LiNbO3crystals were quantitatively scaled via incident exposure energy. The results demonstrated that Zr(2 mol%):Mn:Fe:LiNbO3 crystal had the weakest light‐induced scattering and the mechanism related to their defect structures was discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
分别采用K2O助溶剂提拉法和富锂提拉法生长了近化学计量比LiNbO3晶体.比较了两种方法生长的晶体紫外吸收边和红外吸收谱的差别,光谱结果表明,K2O助溶剂提拉法生长的晶体组成非常均匀,而富锂提拉法生长的晶体组成不均匀,沿晶体生长方向,Li2O含量逐渐增加.另外,两种生长方法中,籽晶表面均看到螺旋状环,分析了其产生原因.  相似文献   

4.
With K2O as flux, near‐stoichiometric In:LiNbO3 (In:SLN) crystals with different indium contents were grown by the top seed solution growth (TSSG) method. Defect structure characteristics and the replacement principle of extrinsic ions were derived from X‐ray powder diffraction, differential thermal analysis (DTA), ultraviolet‐visible (UV) absorption and infrared (IR) spectrum measurement. Further analysis indicated that the threshold concentration of In2O3 in near‐stoichiometric LiNbO3 crystals were about 1.1 mol%. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
本文对采用双坩埚提拉法(DCCZ)生长的化学计量比LiNbO3晶体中出现的机械双晶、组分过冷、包裹体等宏观生长缺陷进行了观察和分析.结果表明机械双晶通常以{102}和{104}面族为双晶面,而不是以前文献报道的{102}和{012}面族;化学计量比LiNbO3晶体双坩埚提拉法生长与同成份晶体生长不同,前者是助熔剂生长体系,生长速度稍快或温度较小的波动就会导致组分过冷,而后者属于纯熔体生长体系,不容易产生组分过冷;包裹体是由于组分过冷生长时界面失稳夹入熔体所造成的.由于这些缺陷的存在都会严重影响单晶的获得率和质量,为此,我们通过大量实验研究后提出了可以减少和避免这些生长缺陷提高晶体质量的方法.  相似文献   

6.
Near‐stoichiometric LiNbO3 single crystal tri‐doped with ZrO2, MnO and Fe2O3 was grown from Li‐riched melt by Czochralski method. The defect structures and composition of these crystals were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of 3466 cm‐1 peak in infrared spectra showed that the crystal grown from Li‐riched melt was near stoichiometric. The photorefractive properties at the wavelength of 488 nm and 633 nm were investigated with two‐beam coupling experiment, respectively. The experimental results showed that the response speed and sensitivity were enhanced significantly and the high diffraction efficiency was obtained at 488 nm wavelength. This manifested that near‐stoichiometric LiNbO3:Mn:Fe:Zr crystal was an excellent candidate for holographic storage. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A near‐stoichiometric LiNbO3 single crystal has been grown by the Czochralski technique from a melt of 58.5 mol% Li2O. Its composition homogeneity was assessed by measuring the UV absorption edge. It was found that the maximum composition difference is about 0.03 mol% in the radial direction and 0.05 mol% in the axial direction. Differential scanning calorimetry (DSC) analysis was performed on the powder from the synthesized raw material and the frozen melt after crystal growth. The analytical results indicate that, during crystal growth, the magnitude of lithium volatilization from the melt surface is more than the degree of segregation from the crystal. The volatilized lithium diffuses into the crystal to compensate for the lithium segregation in the LiNbO3 crystal. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The near sotichiometric Ce:LiNbO3 (Ce:SLN) crystals were grown by the top seeded solution growth (TSSG) method by adding K2O flux to Li2O‐Nb2O5 melt. Their UV‐vis absorption spectra and IR spectra were measured and discussed to investigate their defect structure. The results showed that the grown crystals were near stoichiometric and Ce ions in the crystals located the Li site. Photorefractive properties of Ce:SLN crystals were studied by two‐wave coupling experiment. The results of the two‐wave coupling experiments of the crystals showed that as the CeO2 doping concentrations increased, the diffraction efficiency increased, photoconductivity decreased and the writing time and erasure time increased. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Congruent LiNbO3:Fe and LiNbO3:Mg,Fe crystals were grown by Czochralski method, and vapor transport equilibration technique was employed to improve the [Li]/[Nb] ratios of these crystals. The influence of stoichiometry and MgO dopant on the photorefractive sensitivity and response time of LiNbO3:Fe crystals was investigated. Both stoichiometry and MgO dopant can effectively reduce the amount of intrinsic defects, but MgO can also decrease the concentration of Fe2+ ions in Li‐sites. Near‐stoichiometric and MgO doped LiNbO3:Fe crystal has high photorefractive sensitivity and fast response time. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Transparent and nearly colorless ferroelectric‐ferroelastic β′‐Tb2(MoO4)3 (TMO) single crystals have been grown by the Czochralski (CZ) method. The single crystal structure was investigated by X‐ray powder diffraction and was shown to be a single phase with the structure similar as the β′‐Gd2(MoO4)3 crystal. The optical transparency of the TMO crystal has been measured and the crystal is almost transparent in the visible and near infrared regions. The defects of TMO crystal were evaluated by etching technique and the ferroelectric domain structures were observed by an optical microscope. A high‐resolution X‐ray diffraction analysis demonstrates that the as‐grown TMO crystal possesses relatively high optical quality. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Single crystals of lead magnesium niobate titanate, 0.65 PbMg2/3Nb1/3O3 (PMN) ‐0.35PbTiO3 (PT) were grown using flux method near morphotropic phase boundary (MPB) composition. The crystals grown at the centre of the platinum crucible were found to PT deficient compared to those grown near the walls of the crucibles. A variation of ∼3.8 mol% in PT concentration was found in the crystals grown at the wall and at the centre of the crucible. The difference in the chemical composition of crystals grown at the centre and the near the wall of the crucible was observed by X‐ray diffraction, EDXRF, dielectric and thermal measurements. The presence of PT rich and deficient crystals is explained in terms of the segregation coefficient of PT in PMN. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Cerium‐doped lutetium oxyorthosilicate crystals (Lu2SiO5:Ce) with dimension of ∅︁50 × 60 mm were grown by Czochralski method from an inductively heated iridium crucible. The vaporized substance during growth was examined with XRD and proved to be SiO2. The vertical and the screw strips existing on the surface of the boule were observed with optical microscope and tested with electron microprobe. They are confirmed to be iridium from the crucible and harmful to the crystal growth. The cleavage orientation of LSO was proved to be (110) and it is one of factors to cause crystal cracking. The scattering particles in LSO crystals are analyzed to be mainly composed of Lu2O3 inclusions. Two possible origins on these inclusions are proposed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Single crystals of sillenites (Bi12SiO20, Bi12TiO20) doped with chromium in a wide range of concentrations from 1 x 10‐5 up to 1.8 x 10‐2 wt. % were grown by the Czochralski and top‐seed solution growth (TSSG) techniques. To estimate the content and the average charge state of chromium in the grown crystals the chemical analysis by the modified diphenylcarbazide method was applied. The dependencies of the chromium distribution coefficient, the average charge state of Cr cations, and optical absorption on the Cr concentration were found. Both the shift of the absorption edge toward lower frequencies and the appearance of an additional absorption band in the near IR were observed when the chromium concentration in the crystals was increased. The experimental data suggest that chromium has at least two charge states and occupies probably different positions in the sillenite unit cell.  相似文献   

14.
For the seeding process of oxide Czochralski crystal growth, influence of the crucible bottom shape on the heat generation, temperature and flow field of the system and the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and seed crystal. At first, the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF‐coil was calculated. Using this heat generation in the crucible wall as a source the fluid flow and temperature field of the entire system as well as the seed‐melt interface shape were determined. We have considered two cases, flat and rounded crucible bottom shape. It was observed that using a crucible with a rounded bottom has several advantages such as: (i) The position of the heat generation maximum at the crucible side wall moves upwards, compared to the flat bottom shape. (ii) The location of the temperature maximum at the crucible side wall rises and as a result the temperature gradient along the melt surface increases. (iii) The streamlines of the melt flow are parallel to the crucible bottom and have a curved shape which is similar to the rounded bottom shape. These important features lead to increasing thermal convection in the system and influence the velocity field in the melt and gas domain which help preventing some serious growth problems such as spiral growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
New and high quality piezoelectric crystals La3Ga5SiO14 (LGS) grown by the Czochralski method in a Platinum or Iridium crucible are reported in this paper. The growth defects in the LGS crystals were investigated by Transmission electron microscopy (TEM). It was found that cracks, inclusions, grain boundary and thermal stress in the LGS crystals. Their formation mechanisms and the method of eliminating these defects are discussed. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In:Fe:Cu:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios of 0.946, 1.050, 1.200, and 1.380 in melt. Based on the ICP‐AES (inductively coupled plasma atomic emission spectrometry) analyzed results, the chemical formula of the triple‐doped In:Fe:Cu:LiNbO3 crystals were obtained. It can be seen that the near‐stoichiometric ratio value is between 1.050 and 1.200 for our samples. The optical damage resistance of In:Fe:Cu:LiNbO3 crystals was characterized by changes in light‐induced birefringence and it increases with the increasing of [Li]/[Nb] ratios. The dependence of the optical damage resistance on the defect structure of In:Fe:Cu:LiNbO3 crystals is discussed in detail based on the obtained chemical formulas. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Crack‐free, rod‐shaped single crystals of undoped and 0.5, 0.7 and 1.0 mol% ZrO2‐doped LiNbO3 with a near‐stoichiometric composition were grown by the micro‐pulling down (μ‐PD) method. The structural properties of the grown crystals were examined by powder X‐ray diffraction (XRD). Electron probe micro analysis (EPMA) of the near‐stoichiometric LiNbO3 single crystals revealed the homogeneous incorporation of Zr ions. The change in the refractive index and IR transmission spectra of the grown crystals were examined as a function of the Zr concentration. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
利用提拉法,从富锂(Li2O:Nb2O5=58.5:41.5)熔体中生长了φ40mm×40mm的近化学计量比铌酸锂晶体.用同步辐射异常散射技术结合化学腐蚀法观察了晶体中的畴结构,在y方向发现存在180°反向铁电畴结构,而另外的N-SLN单晶z向切片为单畴结构,表明了所生长的近化学计量比铌酸锂晶体具有区域性单畴.  相似文献   

19.
Two-inch-diameter γ-LiAlO2 single crystals were grown from the melt by Czochralski method. The crystals were examined by optical methods, high-resolution X-ray diffraction and transmission electron microscopy (TEM). Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to determine the Li/Al ratio in the residual melts. The Li-evaporation from both melt and grown crystal is the main problem in the γ-LiAlO2 growth and has to be controlled by acting on the vertical temperature gradient. Shallow gradients increase the Li-evaporation from the crystal surface resulting in boules with a milky rim. On the other hand, steep gradients may induce cracks in the boule and enhance the Li2O escape from melt with consequent variation of the composition. ICP-OES investigations reveal that melt compositions can vary in the range from 46.5 to 50 mol% Li2O to obtain transparent LiAlO2 crystals. Beyond this value, the formation of inclusions inside the crystals is probable. We have established an optimized growth assembly, which allows remaining the melt composition stoichiometric. The as-grown crystals exhibit defects like subgrains, twins and a core of voids and fine-grained inclusions. The latter could be characterized by TEM as submicron LiAl5O8 crystallites.  相似文献   

20.
In this paper, Zr:Fe:LiNbO3 crystals with various Li/Nb ratios were grown by the Czochralski method from melts having compositions varying between 48.6 and 58 mol% Li2O. X-ray powder diffraction (XRD), inductively coupled plasma optical emission/mass spectrometry (ICP-OE/MS), ultraviolet–visible (UV–vis) absorption and the infrared (IR) spectrum were measured and are discussed in terms of the spectroscopic characterization. It was found that as the Li/Nb ratio increases in the melt, the Li/Nb ratio in the crystal also increases, the distribution coefficients of Fe and Zr ions decrease, the absorption edge shifts to a shorter wavelength, and the ZrO2 threshold concentration of the samples decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号