首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coincidence studies with silicon surface barrier detectors have been used to determine fragment kinetic energies, angular correlations and fission cross sections in the fission of Ag,139La,159Tb and U nuclei induced by 600 MeV protons. Symmetric mass distributions are deduced for Ag and Tb, whereas La shows an indication of a stable asymmetric mass distribution. We find no indication of the Businaro-Gallone point. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. The total kinetic energies at symmetric mass divisions follow closely the Viola prediction.  相似文献   

2.
The emission spectra of prompt fission neutrons from mass and kinetic energy selected fission fragments have been measured in235U(n th,f). Neutron energies were determined from the measurement of the neutron time of flight using a NE213 scintillation detector. The fragment energies were measured by a pair of surface barrier detectors in one set of measurements and by a back-to-back gridded ionization chamber in the second set of measurements. The data were analysed event by event to deduce neutron energy in the rest frame of the emitting fragment for the determination of neutron emission spectra and multiplicities as a function of the fragment mass and total kinetic energy. The results are compared with statistical model calculations using shell and excitation energy dependent level density formulations to deduce the level density parameters of the neutron rich fragment nuclei over a large range of fragment masses.  相似文献   

3.
The energy distributions and relative intensities of protons, deutrons, tritons and α-particles emitted along the fission axis during thermal neutron fission of 235U were measured simultaneously with both fission fragment energies. The mass distributions of fragments, the total kinetic energy (TKE), the dependence of the mean TKE on the fragment mass, as well as the mean kinetic energy dependence of polar particles on the fragment mass and energy were subsequently deduced from these data. Although some experimental results agree remarkably well with the hypothesis that polar particles are evaporated in flight from fission fragments, the general conclusion is that these particles are emitted according to some other mechanism.  相似文献   

4.
We present model calculations of kinetic energy releases and fission barriers in asymmetric fission of C60r + ions, using a simple electrostatic model where the fragments are treated as conducting spheres. The kinetic energy releases are calculated using two different approaches for deducing the radii of the spheres. Both approaches give results in qualitative agreement with experimental results. The fission barriers, on the other hand, depend strongly on the model radii and the activation energies for neutral fragment emission. A comparison between the model calculations shows that the choice of the finite size of the smaller fragments become important as r increases and have large influences on the prediction for the C60r + stability limit. The competition between neutral (evaporation) and charged-fragment emission (fission) are discussed within a static over-the-barrier model for electron transfer between conducting spheres.Received: 10 December 2003, Published online: 27 January 2004PACS: 34.70. + e Charge transfer - 36.40.Qv Stability and fragmentation of clusters - 36.40.Wa Charged clusters  相似文献   

5.
Fragment mass and kinetic energy distributions have been measured for isomeric fission of 240Pu. The mass distribution is asymmetric with the average heavy fragment mass nearly equal to that found for ground state spontaneous fission of 240Pu, but slightly lower than for nth + 239Pu-fission. The average total fragment kinetic energy appears to be higher in isomeric fission (179.5?0.7+1.5 MeV) than in spontaneous fission from the ground state (176.8 ± 1.8 MeV).  相似文献   

6.
The recoil properties of ten fission products with masses ranging from 72 to 136 formed in the fission of 238U with protons of energies 25–85 MeV have been determined radiochemically by the integral-range method. From the recoil properties of the products and the Monte Carlo cascade calculations the average kinetic energy, cascade deposition energy, and anisotropy parameter for each fission product has been calculated. The kinetic energy and the excitation energy of the primary fragments leading to the observed fission product, and the total kinetic energy and the total excitation energy of the primary fragment pair have also been calculated.

The results indicate that up to a bombarding energy of 40 MeV fission takes place predominantly by the compound nucleus mechanism, with an increasing contribution of the direct interaction mechanism as the bombarding energy increases. The kinetic energy deficit was found to decrease with increasing bombarding energy. The fission products formed from the symmetric mode of fission have a larger separation distance between the charge centres of their respective primary fragments than those for the asymmetric mode of fission.  相似文献   


7.
The energy distributions and relative intensities of protons, deuterons, tritons and α-particles emitted along the fission axis during spontaneous fission of 252Cf were measured simultaneously with both fission fragment energies. The absolute intensity of particles, the mass distribution of fragments, the total kinetic energy and total excitation energy of both fragments were subsequently deduced from the experimental data. Statistical model calculations based on a hypothesis that the polar particles are evaporated from fission fragments have been performed for 252Cf and 236U fission. Although some experimental results agree remarkably well with the evaporation hypothesis, the considered model cannot describe many features of the polar emission phenomenon.  相似文献   

8.
The barrier against the spontaneous fission has been determined within the Generalized Liquid Drop Model (GLDM) including the mass and charge asymmetry, and the proximity energy. The shell correction of the spherical parent nucleus is calculated by using the Strutinsky method, and the empirical shape-dependent shell correction is 6mp10yed during the deformation process. A quasi-molecular shape sequence has been defined to describe the whole process from one-body shape to two-body shape system, and a two-touching-ellipsoid is adopted when the superdeformed one-body system reaches the rupture point. On these bases the spontaneous fission barriers are systematically studied for nuclei from 2a~Th to 249 Cm for different possible exiting channels with the different mass and charge asymmetries. The double, and triple bumps are found in the fission potential energy in this region, which roughly agree with the experimental results. It is found that at around Sn-like fragment the outer fission barriers are lower, while the partner of the Sn-like fragment is in the range near l~SRu where the ground-state mass is lowered by allowing axially symmetric shapes. The preferable fission channels are distinctly pronounced, which should be corresponding to the fragment mass distributions.  相似文献   

9.
Fission fragment mass and energy distributions and their correlations have been measured for the 16O and 19F + 209Bi reactions over a wide range of excitation energies ( E * = 30-50 MeV). It is observed that in the case of 16O + 209Bi reaction, the average total fragment kinetic energy, <TKE> is nearly independent of the bombarding energy. However, in the case of 19F + 209Bi reaction, the average total kinetic energy of the fission fragments shows a peaking behaviour near the barrier. The variation in <TKE> at near barrier energies in the 19F + 209Bi system seems to be correlated with corresponding strong variation in the variance of the fragment mass distribution. The present results may imply certain dynamical effects leading to compact scission configurations in the fission of 19F + 209Bi system at near barrier bombarding energies. Received: 9 April 2001 / Accepted: 26 May 2001  相似文献   

10.
The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding232Th and238U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy.  相似文献   

11.
Absolute electrofission cross sections for 182,184,186W, natPt, and 209Bi have been measured using solid-state track detectors and parallel-plate avalanche counters for the detection of the fission fragments. The measured cross sections — together with others known from literature — have been analyzed within an extended statistical model to deduce fission barriers and compared with theoretical calculations. From the derived barrier height for platinum, it is concluded that the pairing strength G most likely does not change with deformation (G = const). All experimental fission barriers agree very well with theoretical predictions for G = const.  相似文献   

12.
Several characteristics of fission accompanied by long range alpha particles (LRA) have been studied in the thermal neutron induced fission of235U. The kinetic energies of fission fragments and the LRA were measured with a back-to-back ionization chamber and semiconductor detectors respectively. The kinetic energies of the two fragments and the LRA in LRA fission, along with the energies of pair fragments in the normal binary fissions, were recorded event by event on a magnetic tape by means of a four-parameter data acquisition system. The data were analysed to study the dependence of different quantities in LRA fission on the fragment mass ratio, LRA energy and the total kinetic energy of the fission fragments. It is seen that the most probable energy of LRA increases significantly for near symmetric mass divisions. The total kinetic energy for all mass ratios in LRA fission is found to be (2.6±0.7) MeV larger than that in binary fission. The difference in the total kinetic energies in LRA and binary fissions is seen to be dependent on mass ratio. This result may suggest that the scission configuration in LRA fission is different for different mass ratios. Correlations between the fission fragment and LRA energies have been studied for several mass ratios. It is seen that the most probable fragment kinetic energyĒ k varies nearly linearly with the LRA energyE a for various mass divisions but the variation of the most probable LRA energyĒ a with fragment kinetic energyE k is found to deviate from linearity for several mass ratios. From a least square fit to the variation ofĒ k withE a it is found that the slope ( k/dEa) increases with the increase in mass ratio. The present results are discussed to arrive at a better understanding of the scission configuration in the fission accompanied by LRA emission.  相似文献   

13.
Fragments from thermal-neutron induced fission of235U have been separated by a mass spectrometer with respect to their masses and kinetic energies within 1 μsec. The separation principles are briefly described. For masses 130 to 139 amu the charge distributions have been determined by counting the number of beta tracks emitted from the individual mass selected fission fragments in a nuclear photographic emulsion. In another method, the average number of beta particles for each fragment mass is determined by use of a 4π-proportional counter. The mean nuclear charge as a function of mass is compared with other experimental results and theoretical curves. Contradictory to the radiochemical results, this experiment yields a dip in the mean nuclear charge versus mass curve at mass 132 amu corresponding to the doubly magic nucleus (N=82,Z=50)132Sn. Recent theoretical calculations of Nörenberg are in agreement with this finding.  相似文献   

14.
The fission barriers of 256Fm and 258Fm have been analyzed in the HFB theory. The potential energy and the effective inertia parameter have been calculated in the two-dimensional deformation space of quadrupole and octupole moments. Fission paths for various octupole moments of the exit point from the fission barrier have been determined. The half-life along each path has been calculated. The shortest half-lives have been obtained for the paths with reflection symmetric shapes of nuclei in both the considered isotopes.  相似文献   

15.
The energy balance in the fission of 234U has been investigated on the basis of experimental results from the 233U(d, pf) reaction. Taking into account the neutron evaporation we have deduced the total kinetic energy and excitation energy distributions of the primary fragments as functions of the excitation energy of the fissioning nucleus. The neutron evaporation temperatures have been adjusted so as to reproduce the average value and width of the measured kinetic energy distributions for each fragmentation. Excitation energy distributions of the fragments have been deduced. The data are discussed in the framework of the liquid-drop model with shell corrections. Evidence for energy dissipation in the fission of 234U, involving drastic changes in the scission configuration, is shown for some fragmentation modes.  相似文献   

16.
Binary coincident fragments from the 63Cu + 197Au reaction at a copper energy of 605 MeV have been studied. Fragment energies were measured and fragment masses determined by a kinematic method. Three types of event are defined by suitable adjacent limits in the mass versus total kinetic energy event space. The angular distributions of cross section, average total kinetic energy and average mass have been determined for each event region. Total cross sections determined in the present experiment are compared to those found at lower bombarding energies. Further information on the sequential fission process has been obtained from measurements of yields of radioactive isotopes resulting from bombardment ofthin and thick targets of Au by 605 MeV Cu ions.  相似文献   

17.
The fission probabilities and angular distributions of the fission fragments for the (α, α'f) reaction on 232Th and 238U at a bombarding energy of 120 MeV have been measured from about 4 to 14 MeV excitation energy. Evidence for sub-barrier resonances has been found, the negativeparity ones occurring at the same excitation energy where photofission resonances have been observed. The data are analyzed with the two-humped barrier model. For 238U the data are reasonably well fitted with barriers similar to those known from the literature. For 232Th though, the outer barrier parameters are quite different: the height EB = 6.6 MeV and the width (khω)B = 1.2 MeV. Also for 232Th, introducing an additional mass symmetric and axially asymmetric outer barrier, as was previously found necessary for 238U, does not result in a good fit to the data at higher excitation energies.  相似文献   

18.
The excitation functions of the (γ, n) and (γ, γ′) reactions leading to the formation of the 239Pu, 241Pu, 240Am, 242Am and 243Am spontaneously fissioning isomers have been measured. The experiments have been carried out using a 17-orbit microtron. A spark counter with pulsed feeding served as a fission fragment detector. From the excitation functions measured, the parameters of a two-humped fission barrier have been obtained and compared with other experimental results and theoretical calculations.  相似文献   

19.
《Nuclear Physics A》1998,634(3):267-283
Recent studies have shown that the characteristics of the entrance and exit channels through compact quasi-molecular shapes are compatible with the experimental data on fusion, fission and cluster radioactivity when the deformation energy is determined within a generalized liquid drop model. Analytic expressions allowing to calculate rapidly the main characteristics of this deformation path through necked shapes with quasi-spherical ends are presented now; namely formulas for the fusion and fission barrier heights, the fusion barrier radius, the symmetric fission barriers and the proximity energy.  相似文献   

20.
S S Kapoor 《Pramana》1989,33(1):13-20
This article gives an overview of the physics of the fission phenomenon. It provides a brief introduction to the various aspects of the fission process such as liquid drop model fission barriers, different stages of the fission process, fragment kinetic energy and mass distributions, nuclear shell effects on fission barriers, fragment angular distributions and rare fission modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号