首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a generalization of the uncapacitated facility location problem, where the setup cost for a facility and the price charged for service may depend on the number of customers patronizing the facility. Customers are represented by the nodes of the transportation network, and facilities can be located only at nodes; a customer selects a facility to patronize so as to minimize his (her) expenses (price for service + the part of transportation costs paid by the customer). We assume that transportation costs are paid partially by the service company and partially by customers. The objective is to choose locations for facilities and balanced prices so as to either minimize the expenses of the service company (the sum of the total setup cost and the total part of transportation costs paid by the company), or to maximize the total profit. A polynomial-time dynamic programming algorithm for the problem on a tree network is developed.  相似文献   

2.
We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities based on a generalization of Miller et al. [A.J. Miller, G.L. Nemhauser, M.W.P. Savelsbergh, On the polyhedral structure of a multi-item production planning model with setup times, Mathematical Programming 94 (2003) 375–405] and Marchand and Wolsey [H. Marchand, L.A. Wolsey, The 0–1 knapsack problem with a single continuous variable, Mathematical Programming 85 (1999) 15–33] results. We also describe fast combinatorial separation algorithms for these new inequalities. We use them in a branch-and-cut framework to solve the problem. Some experimental results showing the effectiveness of the approach are reported.  相似文献   

3.
This paper presents two new heuristics for the flowshop scheduling problem with sequence-dependent setup times (SDSTs) and makespan minimization objective. The first is an extension of a procedure that has been very successful for the general flowshop scheduling problem. The other is a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved good results on a variety of combinatorial optimization problems. Both heuristics are compared to a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding scheme is presented as well. The first phase finds a lower bound based on the assignment relaxation for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle time. All procedures are compared for two different classes of randomly generated instances. In the first case where setup times are an order of magnitude smaller than the processing times, the new approaches prove superior to the TSP-based heuristic; for the case where both processing and setup times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.  相似文献   

4.
This paper extends the location-allocation formulation by making the cost charged to users by a facility a function of the total number of users patronizing the facility. Users select their facility based on facility charges and transportation costs. We explore equilibria where each customer selects the least expensive facility (cost and transportation) and where the facility is at a point that minimizes travel costs for its customers. The problem in its general form is quite complex. An interesting special case is studied: facilities and customers are located on a finite line segment and demand is distributed on the line by a given density function.  相似文献   

5.
We consider a discrete facility location problem where the difference between the maximum and minimum number of customers allocated to every plant has to be balanced. Two different Integer Programming formulations are built, and several families of valid inequalities for these formulations are developed. Preprocessing techniques which allow to reduce the size of the largest formulation, based on the upper bound obtained by means of an ad hoc heuristic solution, are also incorporated. Since the number of available valid inequalities for this formulation is exponential, a branch-and-cut algorithm is designed where the most violated inequalities are separated at every node of the branching tree. Both formulations, with and without the improvements, are tested in a computational framework in order to discriminate the most promising solution methods. Difficult instances with up to 50 potential plants and 100 customers, and largest easy instances, can be solved in one CPU hour.  相似文献   

6.
The standard plant location problem determines which plants to open from a set of potential sites in order to satisfy the demands at a set of customer vertices at a minimum total cost. However, the optimal solution may exceed a limit on investment costs imposed on the enterprise in a practical setting. This paper examines the plant location problem in an environment in which the investment in plant and equipment is also an objective to be minimised. The problem is posed as a bicriterion model which examines the tradeoff between the sum of operational and investment costs and investment cost (or total cost vs sunk cost). A weighting method is used to generate efficient solutions, one of which is shown to maximise the return on investment. The integer-friendliness of the LP relaxation is investigated.  相似文献   

7.
This paper examines the plant location problem under the objective of maximizing return-on-investment. However, in place of the standard assumption that all demands must be satisfied, we impose a minimum acceptable level on market share. The model presented takes the form of a linear fractional mixed integer program. Based on properties of the model, a local search procedure is developed to solve the problem heuristically. Variable neighbourhood search and tabu search heuristics are also developed and tested. Thus, a useful extension of the simple plant location problem is examined, and heuristics are developed for the first time to solve realistic instances of this problem.  相似文献   

8.
We study a single machine scheduling problem with availability constraints and sequence-dependent setup costs, with the aim of minimizing the makespan. To the authors’ knowledge, this problem has not been treated as such in the operations research literature. We derive in this paper a mixed integer programming model to deal with such scheduling problem. Computational tests showed that commercial solvers are capable of solving only small instances of the problem. Therefore, we propose two ways for reducing the execution time, namely a valid inequality that strengthen the linear relaxation and an efficient heuristic procedure that provides a starting feasible solution to the solver. A substantial gain is achieved both in terms of the linear programming relaxation bound and in terms of the time to obtain an integer optimum when we use the enhanced model in conjunction with providing to the solver the solution obtained by the proposed heuristic.  相似文献   

9.
In many industries, production–distribution networks have become more complex due to globalization. In particular, increasing interdependencies among structural decisions call for the development of integrated models. In this paper, we present a mathematical model for simultaneous optimization of the plant location, capacity acquisition and technology selection decisions in a multi-commodity environment. The proposed model represents the possible scale and scope economies associated with manufacturing technology alternatives. The problem is formulated as a mixed integer nonlinear program with concave costs. We developed an exact and three heuristic solution procedures. Using these procedures, we are able to solve fairly large facility design problems with reasonable computational effort.  相似文献   

10.
In this article, a capacitated location allocation problem is considered in which the demands and the locations of the customers are uncertain. The demands are assumed fuzzy, the locations follow a normal probability distribution, and the distances between the locations and the customers are taken Euclidean and squared Euclidean. The fuzzy expected cost programming, the fuzzy β-cost minimization model, and the credibility maximization model are three types of fuzzy programming that are developed to model the problem. Moreover, two closed-form Euclidean and squared Euclidean expressions are used to evaluate the expected distance between customers and facilities. In order to solve the problem at hand, a hybrid intelligent algorithm is applied in which the simplex algorithm, fuzzy simulation, and a modified genetic algorithm are integrated. Finally, in order to illustrate the efficiency of the proposed hybrid algorithm, some numerical examples are presented.  相似文献   

11.
In this paper we consider and present formulations and solution approaches for the capacitated multiple allocation hub location problem. We present a new mixed integer linear programming formulation for the problem. We also construct an efficient heuristic algorithm, using shortest paths. We incorporate the upper bound obtained from this heuristic in a linear-programming-based branch-and-bound solution procedure. We present the results of extensive computational experience with both the heuristic and the exact methods.  相似文献   

12.
The formulation and analysis of a new plant location problem is presented. The problem studied, herein referred to as the Return Plant Location Problem (RPLP), is that of cost minimization in a system of suppliers and customers in which there exists a return product from each customer. Lagrangian decomposition based heuristic and exact solution methods are given. The methods are applied to test problems with different structures and compared with the classical subgradient optimization approach.  相似文献   

13.
With emphasis on the simple plant location problem, (SPLP), we consider an important family of discrete, deterministic, single-criterion, NP-hard, and widely applicable optimization problems. The introductory discussion on problem formulation aspects is followed by the establishment of relationships between SPLP and set packing, set covering and set partitioning problems which all are among those structures in integer programming having the most wide-spread applications. An extensive discourse on solution properties and computational techniques, spanning from early heuristics to the presumably most novel exact methods is then provided. Other subjects of concern include a subfamily of SPLP's solvable in polynomial time, analyses of approximate algorithms, transformability of p-CENTER and p-MEDIAN to SPLP, and structural properties of the SPLP polytope. Along the way we attempt to synthesize these findings and relate them to other areas of integer programming.  相似文献   

14.
Scheduling with setup times or setup costs plays a crucial role in todays modern manufacturing and service environments where reliable products/services are to be delivered on time. Scheduling activities profoundly depend on the times/costs required to prepare the facility for performing the activities. However, the vast majority of existing scheduling literature ignores this fact. We define and emphasize the importance, applications, and benefits of explicitly considering setup times/costs in scheduling research. Moreover, a review of the latest research on scheduling problems with setup times/costs is provided.  相似文献   

15.
In this study, we start from a multi-source variant of the two-stage capacitated facility location problem (TSCFLP) and propose a robust optimization model of the problem that involves the uncertainty of transportation costs. Since large dimensions of the robust TSCFLP could not be solved to optimality, we design a memetic algorithm (MA), which represents a combination of an evolutionary algorithm (EA) and a modified simulated annealing heuristic (SA) that uses a short-term memory of undesirable moves from previous iterations. A set of computational experiments is conducted to examine the impact of different protection levels on the deviation of the objective function value. We also investigate the impact of variations of transportation costs that may occur on both transhipment stages on the total cost for a fixed protection level. The obtained results may help in identifying a sustainable and efficient strategy for designing a two stage capacitated transportation network with uncertain transportation costs, and may be applicable in the design and management of similar transportation networks.  相似文献   

16.
We study in this paper multi-product facility location problem in a two-stage supply chain in which plants have production limitation, potential depots have limited storage capacity and customer demands must be satisfied by plants via depots. In the paper, handling cost for batch process in depots is considered in a realistic way by a set of capacitated handling modules. Each module can be regards as alliance of equipment and manpower. The problem is to locate depots, choose appropriate handling modules and to determine the product flows from the plants, opened depots to customers with the objective to minimize total location, handling and transportation costs. For the problem, we developed a hybrid method. The initial lower and upper bounds are provided by applying a Lagrangean based on local search heuristic. Then a weighted Dantzig–Wolfe decomposition and path-relinking combined method are proposed to improve obtained bounds. Numerical experiments on 350 randomly generated instances demonstrate our method can provide high quality solution with gaps below 2%.  相似文献   

17.
Audit firms are faced with the complex job of scheduling auditors to audit tasks. The scheduling becomes more complex as the firm needs to consider real life issues in determining an optimal schedule. Among these issues are the setup times and costs emanating from changing the assignments of the auditors and the lead and lag relationships between the audit tasks.Audit scheduling with overlapping activities and sequence-dependent setup cost has not been treated in literature. This paper presents a formulation and a solution approach for this audit scheduling problem. First, the problem is represented by an activity network with lead/lag relationships. Then the network is analyzed to determine the early and late finish times of activities. An integer linear program (ILP), which uses the early and late finish times of activities to reduce the number of decision variables, is formulated. A four-auditor two-engagement example is used to illustrate the ILP model and its solution. The results indicate that incorporating the setup cost and the overlapping of activities yields lower cost schedules leading to sizable savings in the cost of audits. The proposed treatment is of merit in providing realistic schedules that can be easily implemented  相似文献   

18.
We consider the stochastic version of the facility location problem with service installation costs. Using the primal-dual technique, we obtain a 7-approximation algorithm.  相似文献   

19.
We study the dynamic assignment of flexible servers to stations in the presence of setup costs that are incurred when servers move between stations. The goal is to maximize the long-run average profit. We provide a general problem formulation and some structural results, and then concentrate on tandem lines with two stations, two servers, and a finite buffer between the stations. We investigate how the optimal server assignment policy for such systems depends on the magnitude of the setup costs, as well as on the homogeneity of servers and tasks. More specifically, for systems with either homogeneous servers or homogeneous tasks, small buffer sizes, and constant setup cost, we prove the optimality of “multiple threshold” policies (where servers’ movement between stations depends on both the number of jobs in the system and the locations of the servers) and determine the values of the thresholds. For systems with heterogeneous servers and tasks, small buffers, and constant setup cost, we provide results that partially characterize the optimal server assignment policy. Finally, for systems with larger buffer sizes and various service rate and setup cost configurations, we present structural results for the optimal policy and provide numerical results that strongly support the optimality of multiple threshold policies.  相似文献   

20.
In this paper we review the integer linear formulations of the uncapacitated multiple allocation hub location problem, we study the scope of validity of these formulations and give new ones that generalize the older formulations. Our formulations allow one or two visits to hubs and include a more general cost structure that needs not satisfy the triangle inequality. We prove that the constraints defined by cliques of a related (intersection) graph are tighter constraints than the classical ones. We also discuss a pre-processing of the problem, which is very useful for reducing its size. Finally, we check the strength of the new formulations and compare them with others in the literature by solving instances of two commonly used data sets: the CAB (Civil Aeronautics Board) and AP (Australian Post), and also randomly generated instances. Our computational results clearly show that our formulations outperform all others previously used for small and medium problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号