首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single crystals of the ternary system based on Bi2‐xTlxSe3 (nominaly x = 0.0‐0.1) were prepared using the Bridgman technique. Samples with varying content of Tl were characterized by the measurement of lattice parameters, electrical conductivity σc , Hall coefficient RH (B∥c), and Seebeck coefficient STc). The measurements indicate that by incorporating Tl in Bi2Se3 one lowers the concentration of free electrons and enhances their mobility. This effect is explained in terms of the point defects in the crystal lattice – formation of substitutional defects thallium on the site of bismuth TlBi and the decrease of concentration of selenium vacancies VSe+2. We also discuss the temperature dependence of the power factor σS2 of the samples. Upon the thallium doping we observe a significant increase of the power factor compare to the parental Bi2Se3. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Absorption spectra near the fundamental absoption edge of n‐type of In1‐xGaxAs are studied. The temperature coefficient of the In1‐xGaxAs energy gap, dEg/dT, has been obtained and compared with calculated data. An exponential dependence of the absorption coefficient on photon energy has been found. The slope of the exponential absorption curve is discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Mid‐infrared light emitting diodes (LED) in 3‐5μm wavelength range have been fabricated from InAs/InAsxP1‐x‐ySby/InAsx'P1‐x'‐y'Sby' composition graded layer and InAs/InAsSb multilayers. The heterostructures were grown by liquid phase epitaxy (LPE) between 600 and 520°C. An output power of 3.1 mW at 11K and of 10 μW at 300 K have been obtained under a peak current of 100 mA (50 % duty ratio) from InAsSb multilayers. Recombination mechanisms for these diodes were studied by temperature‐dependent emission spectra using Fourier transform infrared (FTIR) measurement system with double modulation. The output powers of the LEDs decrease rapidly at temperatures above 153 K suggesting that nonradiative and Auger recombinations are the main limitation of the device performance at high temperatures.  相似文献   

4.
The optical properties of the TlInS2xSe2(1‐x)mixed crystals (0.25 ≤ x ≤ 1) have been investigated through the transmission and reflection measurements in the wavelength range of 400–1100 nm. The optical indirect band gap energies were determined by means of the analysis of the absorption data. It was found that the energy band gaps decrease with the increase of selenium atoms content in the TlInS2xSe2(1‐x)mixed crystals. The transmission measurements carried out in the temperature range of 10–300 K revealed that the rates of change of the indirect band gaps with temperature are γ = –9.2×10–4 eV/K, –6.1×10–4 eV/K, –4.7×10–4 eV/K and –5.6×10–4 eV/K for TlInS2, TlInS1.5Se0.5, TlInSSe and TlInS0.5Se1.5 crystals, respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The optical properties of TlInS2xSe2(1‐x)mixed crystals (0.25 ≤ x ≤ 1) have been studied at room temperature through the transmittance and reflectivity measurements in the wavelength range of 400–1100 nm. The spectral dependence of the refractive index for all compositions of studied crystals were obtained. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single‐effective‐oscillator model. The compositional dependencies of refractive index dispersion parameters: oscillator energy, dispersion energy and zero‐frequency refractive index were revealed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The absorption spectra of undoped Y2SiO5 crystals were studied before and after γ‐irradiation. After γ‐irradiation, the additional absorption peaks at 260‐270 and 320nm were observed in as‐grown and H2‐annealed Y2SiO5 crystal, but it did not occur in air‐annealed Y2SiO5 crystal. These absorption peaks were attributed to F color centers and O hole centers, respectively. Owing to more oxygen vacancies and color centers in H2‐annealed Y2SiO5 crystal than that in as‐grown Y2SiO5 crystal after γ‐irradiation, the additional absorption peaks were more intense in the former than that in the latter. With the irradiation dose increasing from 20 to 220kGy, the intensity of additional absorption peaks increased. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

7.
The PbxSn1‐xS (x = 0 – 0.25) thin films were prepared on glass substrates by hot wall vacuum deposition. The films were polycrystalline monophase in nature and had orthorhombic crystal structure. The thickness of the films was about 2‐3 μm. The temperature dependences of the conductivity were measured in the temperature range from 150 to 420 K. The films revealed p‐type of conductivity. The Seebeck coefficient and conductivity values of the films was in the range of α = 6 – 360 μV/K and σ = 4.8×10‐5 – 1.5×10‐2 Ω‐1·cm‐1, respectively, at room temperature depending on concentration of the lead in the films. The lead atoms created the substitution defects PbSn in the crystal lattice of the PbxSn1‐xS. These defects formed the donor energy levels in the band gap. The activation energy of the films increased in the range ΔEa = 0.121 – 0.283 eV with increasing of the lead concentration. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A thermodynamic study is performed for the systems (Ga or In)‐Sb‐O‐Si in order to better understand the difference observed during dewetting experiments of GaSb and InSb in silica ampoules. Results show that the melts can be considered as non reactive toward silica. When the atmosphere is clean (≤ 1 ppm O2), no oxide is formed, while, under oxidising atmosphere, oxides exist above the melting point of the antimonide and are known to increase the wetting angle of the melt on the crucible. However the temperature range for oxide stability is smaller in the case of InSb and this may explain why dewetting is easy for GaSb in presence of oxygen, while it is difficult for InSb. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
CdSxSe1‐x films were deposited by the electron beam evaporation technique on glass substrates at different temperatures in the range 30 – 300 °C using the laboratory synthesized powders of different composition. The films exhibited hexagonal structure and the lattice parameters shifted from CdSe to CdS side as the composition changed from CdSe to CdS side. The bandgap of the films increased from 1.68 to 2.41 eV as the concentration of CdS increased. The root‐mean‐roughness (RMS) values are 3.4, 2.6, 1.2 and 0.6 nm as the composition of the films shifted towards CdS side. The conductivity varies from 30 Ωcm‐1 to 480 Ωcm‐1 as the ‘x’ value increases from 0 to 1. The films exhibited photosensitivity. The PL spectrum shifts towards lower energies with decreasing x, due to the decrease of the fundamental gap with Se composition. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
1 mol%, 2 mol%, 3 mol%, 4 mol% and 5 mol% In3+ doped LiNbO3 crystals were grown by the Czochralski method, respectively. Oxidized treatment of some crystals was carried out. The infrared transmission spectra and photo‐damage resistance of the samples were measured. The results showed that the OH absorption peaks of In(3mol%):LiNbO3, In(4mol%):LiNbO3 and In(5mol%):LiNbO3 crystals were located at about 3508 cm‐1, while those of In(1mol%):LiNbO3 and In(2mol%):LiNbO3 crystals were located at about 3484cm‐1. When the doped In3+ concentration reached its threshold in LiNbO3 crystal, photo‐damage resistance of In:LiNbO3 crystals was two orders of magnitude higher than that of pure LiNbO3 crystal. The experimental results of the second harmonic generation (SHG) showed that the phase matching temperatures of In:LiNbO3 crystals were lower than those of Zn:LiNbO3 and Mg:LiNbO3 crystals and the SHG efficiency reached 38%. Oxidization treatment was also found to make the dark trace resistance of crystals increase. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The synthesis of pyrazoles and its derivatives remains of great interest due to their wide applications in pharmaceutical and agrochemical industry. The 1‐phenyl‐3‐(propan‐2‐yl)‐1H‐pyrazol‐5‐ol was synthesized. The 1‐phenyl‐3‐(propan‐2‐yl)‐1H‐pyrazol‐5‐ol single crystals were grown by slow solvent evaporation technique using mixture of chloroform and methanol as a solvent. Yellowish and transparent crystals having maximum dimensions of 0.005 m × 0.004 m × 0.002 m were grown. The crystals were characterized by powder XRD, FT–IR, TG–DTA–DSC and dielectric study. The crystals remained stable up to 160 °C and then start decomposing. The DSC suggested both endothermic and exothermic reactions. One broad exothermic peak was observed at 558.1 °C due to complete decomposition of the sample into the gaseous phase and reaction within the products. Thermodynamic and Kinetic parameters of decomposition were calculated by Coats–Redfern formula. The dielectric study was carried out in the frequency range from 50 Hz to 5 MHz at room temperature. The dielectric constant decreased as the frequency of the applied field increased. The variations of dielectric loss, a.c. conductivity and a.c. resistivity also studied with the frequency of the applied field. Jonscher's power law was verified for a.c. conductivity.  相似文献   

12.
A new and simple route to synthesize Lead sulfide (PbS) crystals with the clover‐like structure was described in the current paper. PbS was prepared in a simple aqueous solution employing (CH3COO)2Pb and thiourea as the initial materials under 130 W microwave irradiation. No any surfactant or template including organic polyamines with N‐chelation property was needed. The phase and composition of the product were identified by X‐ray powder diffraction (XRD) and X‐ray photoelectron spectra (XPS). TEM observation showed that the product with the six‐petal flower‐shaped structures was obtained, but SEM observation confirmed the clover‐like structure of the product; and the six‐petal flowers were formed via the overlap of two clovers revolved 60° around the center of the flower. Some factors affected the shape of the final product were studied and the optical properties of PbS crystals with the clover‐like structure were measured. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The effects of x‐beam irradiation with different doses on microhardness and its related physical constants on [Ky(NH4)1‐y]2ZnCl4 mixed crystals with concentrations, y equals 0.000, 0.232, 0.644, 0.859 or 1.000 has been studied. The tests were performed for x‐doses from 0.2 kGy up to 1.6 kGy for loads from 20 to 160 g. The variation of hardness on (010) faces of orthorhombic [Ky(NH4)1‐y]2ZnCl4 mixed crystals with load were studied. The experimental results showed that, the hardness decreased as the x‐doses increased. Variation of the microhardness follows the normal ISE trend for low x‐doses and un‐irradiated crystals, then follows the reverse ISE trend for high x‐doses. Analysis of the experimental results revealed that: the radial cracks length, indentation size and applied indentation load are mutually related, and these dependences related with fracture mechanics are the basis of Meyer's empirical law. Indentation size effect (ISE) can be explained satisfactory by Hays‐Kendall's approach and proportional specimen resistance model. Brittleness of two cracks system are applicable for characterizing cracks around indentation impression (i.e. radial cracks) and another is (lateral cracks) for [Ky(NH4)1‐y]2ZnCl4 mixed crystals, crystals in the load range 60 – 160 g. It is shown that indentation induced microhardness decreases, whereas the length of radial cracks induced on indentation increases with the increase of x‐doses. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Thin films of lead telluride (PbTe) of thicknesses ranging from 1000 Å to 2500 Å have been prepared by co‐evaporation (three temperature) technique, onto precleaned amorphous glass substrates at various temperatures. The deposited samples were annealed and annealed samples were used for characterization. Resistivity of these samples was measured by four‐probe technique as a function of thickness and temperature. Activation energy for charge transport have been evaluated and found in the range of 0.09 to 0.106 eV. Thermoelectric power has been measured and found to be positive indicating that the samples are p‐type semiconducting material. Mobility variation with temperature has been estimated (evaluated) and correlated with scattering mechanism in the entire range of temperature studied. The X‐ray diffraction analysis confirmed that films are polycrystalline having cubic structure cell and lattice parameters are reported.  相似文献   

15.
The current voltage characteristics of In / Cu with n‐type MoSe2 Schottky diodes were measured over a wide temperature range 50 < T < 300 K. The interface formed by In and MoSe2 shows ohmic behavior after annealing the contact at 100 °C for 12 h. The ohmic nature was retained at all the measured temperatures. The Cu ‐ nMoSe2 interface formed a Schottky junction diode with a good rectification ratio. The Schottky barrier height and the ideality factor thereby obtained were 0.72 eV and 1.45, respectively, at room temperature. Below room temperature, the barrier height and the ideality factor vary with decreasing temperature. The changes are significant at low temperatures. Barrier height inhomogeneities at the interface cause deviation in the zero‐bias barrier height and the ideality factor at low temperatures, and produce extra current such that I‐V characteristics remain consistent with the thermionic emission mechanism. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In the present work, we have readjusted some empirical parameters obtained by Kumar et al. in their work which contains some numerical errors.  相似文献   

17.
The electron characteristics of defects in the initial and electron irradiated Hg1−xCdxTe (2–3 MeV, 1018 cm−2, 300 K) crystals using the positron annihilation method have been investigated. The data of electric measurements are confirmed on connection of p-type conductivity with vacancy defects of metal sublattice initial crystals Hg1−xCdxTe. An analysis of correlation curves of irradiated crystals has shown a possibility of formation of associations of initial defects and radiation damages of vacancy type during radiation process. The presence of narrow component on correlation curves in the region of small angles is associated with formation of positronium states localized in the region of radiation defect complex of vacancy type. Identification of positron-sensitive defects with electrically active radiation induced ones has been carried out according to the results of isochronal annealing of irradiated crystals.  相似文献   

18.
Ethylene oxide catalyst is a high metal loading catalyst, in which silver crystals is impregnated on α‐Al2O3 support. In this type of catalyst, metal dispersion plays an important role on catalyst selectivity for desired products. In this work, silver nitrate and silver oxide together with oxalic and lactic acid as the raw materials were used with different impregnation techniques to make catalysts with high silver content and dispersion. It is also known that the use of promoters affect the metal dispersion on the catalyst support and for that cesium was used as the promoter to improve the silver crystal dispersion. Physical and chemical characteristics of the prepared catalysts, i.e., surface area, pore volume, silver content, nano‐sized silver crystals and their dispersion were measured using BET method, Atomic Absorption Spectroscopy, X‐ray diffraction and TEM. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
4‐(2‐hydroxyphenylamino)‐pent‐3‐en‐2‐one (HPAP) was synthesized and single crystals were grown by the solution growth technique using methanol as a solvent. The crystals having orthorhombic symmetry were characterized by single crystal XRD, FTIR spectroscopy, NMR spectroscopy, TGA, DSC and dielectric studies. Very less variation in the value of dielectric constant is found for different frequencies of applied field. The crystals were exhibiting positive photoconductivity and poor NLO responses. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Organic optical material 4‐Aminopyridinium‐4‐nitro phenolate (4AP4NP) has been synthesized, and single crystals of size 20 x 14 x 6 mm3 have been grown from acetone solvent at room temperature by solvent evaporation technique. The grown crystals have been characterized by X‐ray diffraction to determine the cell parameters, and by FT‐IR technique to confirm the formation of the expected compound. The crystal belongs to monoclinic crystal system with space group P21/a.The structural perfection of the grown crystals has been analyzed by high‐resolution X‐ray diffraction (HRXRD) rocking curve measurements. The thermal stability of the compound has been determined by TG‐DTA curves. The transmittance of 4AP4NP has been used to determine the refractive index n; the extinction coefficient K and both the real εr and imaginary εi components of the dielectric constant as functions of photon energy. The optical band gap of 4AP4NP is 2.4 eV. The dielectric and mechanical behavior of the specimen was also studied. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号