首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

2.
In this work, we report the construction of potential energy surfaces for the (3)A(') and (3)A(') states of the system O((3)P) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O((3)P) + HBr → OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A(') electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A(') surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A(') and 4.16 kcal/mol for the (3)A(') state.  相似文献   

3.
Xia WS  Zhu RS  Lin MC  Mebel AM 《Faraday discussions》2001,(119):191-205; discussion 255-74
The potential energy surface (PES) of the CH3OH system has been characterized by ab initio molecular orbital theory calculations at the G2M level of theory. The mechanisms for the decomposition of CH3OH and the related bimolecular reactions, CH3 + OH and 1CH2 + H2O, have been elucidated. The rate constants for these processes have been calculated using variational RRKM theory and compared with available experimental data. The total decomposition rate constants of CH3OH at the high- and low-pressure limits can be represented by k infinity = 1.56 x 10(16) exp(-44,310/T) s-1 and kAr0 = 1.60 x 10(36) T-12.2 exp(-48,140/T) cm3 molecule-1 s-1, respectively, covering the temperature range 1000-3000 K, in reasonable agreement with the experimental values. Our results indicate that the product branching ratios are strongly pressure dependent, with the production of CH3 + OH and 1CH2 + H2O dominant under high (P > 10(3) Torr) and low (P < 1 atm) pressures, respectively. For the bimolecular reaction of CH3 and OH, the total rate constant and the yields of 1CH2 + H2O and H2 + HCOH at lower pressures (P < 5 Torr) could be reasonably accounted for by the theory. For the reaction of 1CH2 with H2O, both the yield of CH3 + OH and the total rate constant could also be satisfactorily predicted theoretically. The production of 3CH2 + H2O by the singlet to triplet surface crossing, predicted to occur at 4.3 kcal mol-1 above the H2C...OH2 van der Waals complex (which lies 82.7 kcal mol-1 above CH3OH), was neglected in our calculations.  相似文献   

4.
The intrinsically multireference dissociation of the C-N bond in ground-state diazomethane (CH(2)N(2)) at different angles has been studied with the multireference Brillouin-Wigner coupled-cluster singles and doubles (MRBWCCSD) method. The morphology of the calculated potential energy surface (PES) in C(s)() symmetry is similar to a multireference perturbational (CASPT3) PES. The MRBWCCSD/cc-pVTZ H(2)C-N(2) dissociation energy with respect to the asymptotic CH(2)(?(1)A(1)) + N(2)(X(1)Sigma(g)(+)) products is D(e) = 35.9 kcal/mol, or a zero-point corrected D(0) = 21.4 kcal/mol with respect to the ground-state CH(2)(X(3)B(1)) + N(2)(X(1)Sigma(g)(+)) fragments.  相似文献   

5.
The reaction of NCN with O is relevant to the formation of prompt NO according to the new mechanism, CH+N2-->cyclic-C(H)NN- -->HNCN-->H+NCN. The reaction has been investigated by ab initio molecular orbital and transition state theory calculations. The mechanisms for formation of possible product channels involved in the singlet and triplet potential energy surfaces have been predicted at the highest level of the modified GAUSSIAN-2 (G2M) method, G2M (CC1). The barrierless association/dissociation processes on the singlet surface were also examined with the third-order Rayleigh-Schr?dinger perturbation (CASPT3) and the multireference configuration interaction methods including Davidson's correction for higher excitations (MRCI+Q) at the CASPT3(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) and MRCI+Q(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) levels. The rate constants for the low-energy channels producing CO+N2, CN+NO, and N(4S)+NCO have been calculated in the temperature range of 200-3000 K. The results show that the formation of CN+NO is dominant and its branching ratio is over 99% in the whole temperature range; no pressure dependence was noted at pressures below 100 atm. The total rate constant can be expressed by: kt=4.23x10(-11) T0.15 exp(17/T) cm3 molecule(-1) s(-1).  相似文献   

6.
The electronic energy barriers of surface reactions pertaining to the mechanism of the electrooxidation of methane on Pt (111) were estimated with density functional theory calculations on a 10-atom Pt cluster, using both the B3LYP and PW91 functionals. Optimizations of initial and transition states were performed for elementary steps that involve the conversion of CH(4) to adsorbed CO at the Pt/vacuum interface. As a first approximation we do not include electrolyte effects in our model. The reactions include the dissociative chemisorption of CH(4) on Pt, dehydrogenation reactions of adsorbed intermediates (*CH(x) --> *CH(x-1) + *H and *CH(x)O --> *CH(x-1)O + *H), and oxygenation reactions of adsorbed CH(x) species (*CH(x) + *OH --> *CH(x)OH). Many pathways were investigated and it was found that the main reaction pathway is CH(4) --> *CH(3) --> *CH(2) --> *CH --> *CHOH --> *CHO --> *CO. Frequency analysis and transition-state theory were employed to show that the methane chemisorption elementary step is rate-limiting in the above mechanism. This conclusion is in agreement with published experimental electrochemical studies of methane oxidation on platinum catalysts that have shown the absence of an organic adlayer at electrode potentials that allow the oxidation of adsorbed CO. The mechanism of the electrooxidation of methane on Pt is discussed.  相似文献   

7.
To provide insight on the reaction mechanism of the methyperoxy (CH(3)O(2)?) self-reaction, stationary points on both the spin-singlet and the spin-triplet potential energy surfaces of 2(CH(3)O(2)?) have been searched at the B3LYP/6-311++G(2df,2p) level. The relative energies, enthalpies, and free energies of these stationary points are calculated using CCSD(T)/cc-pVTZ. Our theoretical results indicate that reactions on a spin-triplet potential energy surface are kinetically unfavorable due to high free energy barriers, while they are more complicated on the spin-singlet surface. CH(3)OOCH(3) + O(2)(1) can be produced directly from 2(CH(3)O(2)?), while in other channels, three spin-singlet chain-structure intermediates are first formed and subsequently dissociated to produce different products. Besides the dominant channels producing 2CH(3)O? + O(2) and CH(3)OH + CH(2)O + O(2) as determined before, the channels leading to CH(3)OOOH + CH(2)O and CH(3)O? + CH(2)O + HO(2)? are also energetically favorable in the self-reaction of CH(3)O(2)? especially at low temperature according to our results.  相似文献   

8.
The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.  相似文献   

9.
冀永强  冯文林  徐振峰  雷鸣  郝茂荣 《化学学报》2001,59(12):2099-2104
采用DFT(B3LYP)方法,分别在6-311g(d,p),6-311++g(d,p)和自洽相关基组cc-pVIZ水平上优化了基态硝基甲烷和自由基H,OH,CH3,CH2[^3B1]以及O[^3P]等发生吸氢反应时的过渡态结构,并计算了反应的位垒。研究表明,对同一反应,不同基组下优化得到的过渡态几何结构基本一致;反应位垒数值的大小也基本接近,经校正,硝基甲烷同自由基反应位垒的理论计算值同实验结果基本吻合。  相似文献   

10.
The peroxo dizinc Zn(2)O(2) complex Q coordinated by imidazole and carboxylate groups for each Zn center has been designed to model the hydroxylase component of methane monooxygenase (MMO) enzyme, on the basis of the experimentally available structure information of enzyme with divalent zinc ion and the MMO with Fe(2)O(2) core. The reaction mechanism for the hydroxylation of methane and its derivatives catalyzed by Q has been investigated at the B3LYP*/cc-pVTZ, Lanl2tz level in protein solution environment. These hydroxylation reactions proceed via a radical-rebound mechanism, with the rate-determining step of the C-H bond cleavage. This radical-rebound reaction mechanism is analogous to the experimentally available MMOs with diamond Fe(2)O(2) core accompanied by a coordinate number of six for the hydroxylation of methane. The rate constants for the hydroxylation of substrates catalyzed by Q increase along CH(4) < CH(3)F < CH(3)CN ≈ CH(3)NO(2) < CH(3)CH(3). Both the activation strain ΔE(≠)(strain) and the stabilizing interaction ΔE(≠)(int) jointly affect the activation energy ΔE(≠). For the C-H cleavage of substrate CH(3)X, with the decrease of steric shielding for the substituted CH(3)X (X = F > H > CH(3) > NO(2) > CN) attacking the O center in Q, the activation strain ΔE(≠)(strain) decreases, whereas the stabilizing interaction ΔE(≠)(int) increases. It is predicted that the MMO with peroxo dizinc Zn(2)O(2) core should be a promising catalyst for the hydroxylation of methane and its derivatives.  相似文献   

11.
Potential energy surfaces, minimum energy reaction paths, minima, transition states, reaction barriers, and conical intersections for the most important atmospheric reactions of methyl nitrate (CH(3)ONO(2)) and methylperoxy nitrite (C(3)HOONO) on the electronic ground state have been studied (i) with the second-order multiconfigurational perturbation theory (CASPT2) by computation of numerical energy gradients for stationary points and (ii) with the density functional theory (DFT). The proposed mechanism explains the conversion of unreactive alkyl peroxy radicals into alkoxy radicals: CH(3)O(2) + NO <=> CH(3)OONO <=> CH(3)O + NO(2) left arrow over right arrow CH(3)ONO(2). Additionally, several discrepancies found in the comparison of the results obtained from the two employed approaches are analyzed. CASPT2 predicts that all dissociation reactions into radicals occur without an extra exit energy barrier. In contrast, DFT finds transition states for the dissociations of cis- and trans-methylperoxy nitrite into CH(3)O + NO(2). Furthermore, multiconfigurational methods [CASPT2 and complete active space SCF (CAS-SCF)] predict the isomerization of CH3ONO2 to CH3OONO to occur in a two-step mechanism: (i) CH(3)ONO(2) --> CH(3)O + NO(2); and (ii) CH(3)O + NO(2) --> CH(3)OONO. The reason for this has to do with the coupling of the ground electronic state with the first excited state. Therefore, it is demonstrated that DFT methods based on single determinantal wave functions give an incorrect picture of the aforementioned reaction mechanisms.  相似文献   

12.
The mechanism for the CH3+C2H5OH reaction has been investigated by the modified Gaussian-2 method based on the geometric parameters of the stationary points optimized at the B3LYP/6-311+G(d,p) level of theory. Five transition states have been identified for the production of CH4+CH3CHOH (TS1), CH4+CH3CH2O (TS2), CH4+CH2CH2OH (TS3), CH3OH+CH3CH2 (TS4), and CH3CH2OCH3+H (TS5) with the corresponding barriers 12.0, 13.2, 16.0, 44.7, and 49.9 kcal/mol, respectively. The predicted rate constants and branching ratios for the three lower-energy H-abstraction reactions were calculated using the conventional and variational transition state theory with quantum-mechanical tunneling corrections for the temperature range 300-3000 K. The predicted total rate constant, kt=8.36 x 10(-76) T(20.00) exp(5258/T) cm3 mol(-1) s(-1) (300-600 K) and 6.10 x 10(-25) T(4.10)exp(-4058/T) cm3 mol(-1) s(-1) (600-3000 K), agrees closely with existing experimental data in the temperature range 403-523 K. Similarly, the predicted rate constants for CH3+CH3CD2OH and CD3+C2H5OD are also in reasonable agreement with available low temperature kinetic data.  相似文献   

13.
A relative rate experiment is carried out for six isotopologues of methanol and their reactions with OH and Cl radicals. The reaction rates of CH2DOH, CHD2OH, CD3OH, (13)CH3OH, and CH3(18)OH with Cl and OH radicals are measured by long-path FTIR spectroscopy relative to CH3OH at 298 +/- 2 K and 1013 +/- 10 mbar. The OH source in the reaction chamber is photolysis of ozone to produce O((1)D) in the presence of a large excess of molecular hydrogen: O((1)D) + H2 --> OH + H. Cl is produced by the photolysis of Cl2. The FTIR spectra are fitted using a nonlinear least-squares spectral fitting method with measured high-resolution infrared spectra as references. The relative reaction rates defined as alpha = k(light)/k(heavy) are determined to be: k(OH + CH3OH)/k(OH + (13)CH3OH) = 1.031 +/- 0.020, k(OH + CH3OH)/k(OH + CH3(18)OH) = 1.017 +/- 0.012, k(OH + CH3OH)/k(OH + CH2DOH) = 1.119 +/- 0.045, k(OH + CH3OH)/k(OH + CHD2OH) = 1.326 +/- 0.021 and k(OH + CH3OH)/k(OH + CD3OH) = 2.566 +/- 0.042, k(Cl + CH3OH)/k(Cl + (13)CH3OH) = 1.055 +/- 0.016, k(Cl + CH3OH)/k(Cl + CH3(18)OH) = 1.025 +/- 0.022, k(Cl + CH3OH)/k(Cl + CH2DOH) = 1.162 +/- 0.022 and k(Cl + CH3OH)/k(Cl + CHD2OH) = 1.536 +/- 0.060, and k(Cl + CH3OH)/k(Cl + CD3OH) = 3.011 +/- 0.059. The errors represent 2sigma from the statistical analyses and do not include possible systematic errors. Ground-state potential energy hypersurfaces of the reactions were investigated in quantum chemistry calculations at the CCSD(T) level of theory with an extrapolated basis set. The (2)H, (13)C, and (18)O kinetic isotope effects of the OH and Cl reactions with CH3OH were further investigated using canonical variational transition state theory with small curvature tunneling and compared to experimental measurements as well as to those observed in CH4 and several other substituted methane species.  相似文献   

14.
The H-atom abstraction reaction, O((3)P) + CH(4) → OH + CH(3), has been studied at a hyperthermal collision energy of 64 kcal mol(-1) by two crossed-molecular-beams techniques. The OH products were detected with a rotatable mass spectrometer employing electron-impact ionization, and the CH(3) products were detected with the combination of resonance-enhanced multiphoton ionization (REMPI) and time-sliced ion velocity-map imaging. The OH products are mainly formed through a stripping mechanism, in which the reagent O atom approaches the CH(4) molecule at large impact parameters and the OH product is scattered in the forward direction: roughly the same direction as the reagent O atoms. Most of the available energy is partitioned into product translation. The dominance of the stripping mechanism is a unique feature of such H-atom abstraction reactions at hyperthermal collision energies. In the hyperthermal reaction of O((3)P) with CH(4), the H-atom abstraction reaction pathway accounts for 70% of the reactive collisions, while the H-atom elimination pathway to produce OCH(3) + H accounts for the other 30%.  相似文献   

15.
The complexes formed by noncovalent interactions between formic acid and dimethyl ether are investigated by ab initio methods and characterized by matrix isolation spectroscopy. Six complexes with binding energies between -2.26 and -7.97 kcal mol(-1) (MP2/cc-pVTZ+zero point vibrational energy+basis set superposition erros) are identified. The two strongest bound complexes are, within a range of 0.3 kcal mol(-1), isoenergetic. The binding in these six dimers can be described in terms of OH...O, C=O...H, C-O...H and CH...O interactions. Matrix isolation spectroscopy allowed to characterize the two strongest bound complexes by their infrared spectra.  相似文献   

16.
The thermal instability of alpha-fluoroalcohols is generally attributed to a unimolecular 1,2-elimination of HF, but the barrier to intramolecular HF elimination from CF3OH is predicted to be 45.1 +/- 2 kcal/mol. The thermochemical parameters of trifluoromethanol were calculated using coupled-cluster theory (CCSD(T)) extrapolated to the complete basis set limit. High barriers of 42.9, 43.1, and 45.0 kcal/mol were predicted for the unimolecular decompositions of CH2FOH, CHF2OH, and CF3OH, respectively. These barriers are lowered substantially if cyclic H-bonded dimers of CF3OH with complexation energies of approximately 5 kcal/mol are involved. A six-membered ring dimer has an energy barrier of 28.7 kcal/mol and an eight-membered dimer has an energy barrier of 32.9 kcal/mol. Complexes of CF3OH with HF lead to strong H-bonded dimers, trimers and tetramers with complexation energies of approximately 6, 11, and 16 kcal/mol, respectively. The dimer, CH3OH:HF, and the trimers, CF3OH:2HF and (CH3OH)2:HF, have decomposition energy barriers of 26.7, 20.3, and 22.8 kcal/mol, respectively. The tetramer (CH3OH:HF)2 gives rise to elimination of two HF molecules with a barrier of 32.5 kcal/mol. Either CF3OH or HF can act as catalysts for HF-elimination via an H-transfer relay. Because HF is one of the decomposition products, the decomposition reactions become autocatalytic. If the energies due to complexation for the CF3OH-HF adducts are not dissipated, the effective barriers to HF elimination are lowered from approximately 20 to approximately 9 kcal/mol, which reconciles the computational results with the experimentally observed stabilities.  相似文献   

17.
Reaction of tris(2-hydroxy-3,5-dimethylbenzyl)amine (6) with phosphorus reagents led to the formation of the phosphoramidate, N[CH2(Me2C6H2)O]2PO (1), the phosphate N[CH2(Me2C6H2)O]2[CH2(Me2C6H2)OH]P(O)(OPh) (2), the phosphonium salts N[CH2(Me2C6H2)O]3PMe+I- (3A) and N[CH2(Me2C6H2)O]3PMe+I3- (3B), and the phosphonates N[CH2(Me2C6H2)O]2[CH2(Me2C6H2)OH]P(O)Me (4) and N[CH2(Me2C6H2)O]2[CH2(Me2C6H2)OSiMe3]P(O)Me (5). X-ray analysis provided molecular structures for all of the compounds. The solid-state structural representations were supported in solution by an analysis of the NCH2 proton NMR patterns. The structures of 3A and 3B show the presence of phosphatranes with weak P-N donor interactions. These represent the first phosphatranes containing all six-membered rings. Variable temperature analysis of the 1H NMR spectra of 3A indicates fluxional behavior whereby a racemic mixture of the chiral phosphonium salt rapidly intraconverts at room temperature. The activation energy for the enantiomeric conversion of the clockwise and anticlockwise orientations of the propeller-like phosphatrane is 11.2 kcal/mol, which is compared to that of the isoelectronic silatrane N[CH2(Me2C6H2)O]3SiMe (E), 10.3 kcal/mol.  相似文献   

18.
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.  相似文献   

19.
In this article, we briefly review the recent experimental studies of the multiple channel dynamics of the O((1)D) reaction with alkane molecules using the significantly improved universal crossed molecular beam technique. In these reactions, the dominant reaction mechanism is found to be an O atom insertion into the C-H bond, while a direct abstraction mechanism is also present in the OH formation channel. While the reaction mechanism is similar for all of these reactions, the product channels are quite different because of the significantly different energetics of these reaction channels. In the O((1)D) reaction with methane, OH formation is the dominant process while H atom formation is also a significant process. In the O((1)D) reaction with ethane, however, the CH(3) + CH(2)OH is the most important process, OH formation is still significant and H atom formation is of minor importance. A new type of O atom insertion mechanism (insertion into a C-C bond) is also inferred from the O((1)D) reaction with cyclopropane. Through these comprehensive studies, complete dynamical pictures of many multiple channel chemical reactions could be obtained. Such detailed studies could provide a unique bridge between dynamics and kinetics research.  相似文献   

20.
Rate constants for the reactions of OH radicals and NO3 radicals with dimethyl phosphonate [DMHP, (CH3O)2P(O)H], dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], and dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5] have been measured at 296 +/- 2 K and atmospheric pressure using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-12) cm3 molecule(-1) s(-1)) were as follows: DMHP, 4.83 +/- 0.25; DMMP, 10.4 +/- 0.6; and DMEP, 17.0 +/- 1.0, with a deuterium isotope effect of k(OH + DMMP)/k(OH + DMMP-d9) = 4.8 +/- 1.2. The rate constants obtained for the NO3 radical reactions (in units of 10(-16) cm3 molecule(-1) s(-1)) were as follows: DMHP, < 1.4; DMMP, 2.0 +/- 1.0; and DMEP, 3.4 +/- 1.4. Upper limits to the rate constants for the O3 reactions of < 8 x 10(-20) cm3 molecule(-1) s(-1) for DMHP and < 6 x 10(-20) cm3 molecule(-1) s(-1) for DMMP and DMEP were determined. Products of the reactions of OH radicals with DMHP, DMMP, and DMEP were investigated in situ using atmospheric pressure ionization mass spectrometry (API-MS) and, for the DMMP and DMEP reactions, Fourier transform infrared (FT-IR) spectroscopy. API-MS analyses showed the formation of products of molecular weight 96 and 126, attributed to CH3OP(O)(H)OH and (CH3O)2P(O)OH, respectively, from DMHP; of molecular weight 110, attributed to CH3OP(O)(CH3)OH, from DMMP; and of molecular weight 124 and 126, attributed to CH3OP(O)(C2H5)OH and (CH3O)2P(O)OH, respectively, from DMEP. FT-IR analyses showed formation (values given are % molar yields) of the following: from DMMP, CO, 54 +/- 6; CO2, 5 +/- 1 in dry air; HCHO, 3.9 +/- 0.7; HC(O)OH, < 1.4 in dry air; RONO2, approximately 4; and formate ester, approximately 8; and from DMEP, CO, 50 +/- 7; CO2, 11 +/- 4; CH3CHO, 18 +/- 8; HCHO, < 7; HC(O)OH, < 6; RONO2, < or = 5; and formate ester, 5.0 +/- 1.5. Possible reaction mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号