首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the design and performance of a 210–280 GHz SIS heterodyne receiver built for use on the Maxwell Telescope. The mixer utilises a lead alloy SIS tunnel junction, mounted in 41 reduced height rectangular waveguide, and is tuned with a backshort in 21 reduced height guide. The receiver has a receiver noise temperature of <200K (DSB) across the RF band from 210–270 GHz, with a best noise temperature measured in the laboratory of 113K (DSB) at 231 GHz. A prototype version of this receiver was successfully operated on the telescope in May 1989. By direct intercalibration with a Schottky diode receiver we deduced a best receiver noise temperature of 140K (DSB) at 245 GHz. Discrepancies between this figure and that derived from broad band thermal load calibration are discussed in the accompanying paper (Little et al., 1992, this issue).  相似文献   

2.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

3.
Several SIS quasiparticle mixers have been designed and tested for the frequency range from 80 to 115 GHz. The sliding backshort is the only adjustable RF tuning element. The RF filter reactance is used as a fixed RF matching element. A mixer which uses a single 2×2 m2 Pb-alloy junction in a quarter-height waveguide mount has a coupled conversion gain of GM(DSB)=2.6±0.5 dB with an associated noise temperature of TM(DSB)=16.4±1.8 K at the best DSB operation point. The receiver noise temperature TR(DSB) is 27.5±0.8 K for the mixer test apparatus. This mixer provides a SSB receiver noise temperature below 50 K over the frequency range from 91 to 96 GHz, the minimum being TR(SSB)=44±4 K. Another mixer with an array of five 5×5 m2 junctions in series in a full-height wave-guide mount has much lower noise temperature TM(DSB)=6.6±1.6 K, but less gain GM(DSB)=–5.1±0.5 dB.Contribution of the U.S. Government, not subject to copyright  相似文献   

4.
We report recent results on a 20% reduced height 270–425 GHz SIS waveguide receiver employing a 0.49 µm2 Nb/AlO x /Nb tunnel junction. A 50% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner reduced height waveguide mixer block. The junction uses an end-loaded tuning stub with two quarter-wave transformer sections. We demonstrate that the receiver can be tuned to give 0–2 dB of conversion gain and 50–80% quantum efficiency over parts of it's operating range. The measured instantaneous bandwidth of the receiver is 25 GHz which ensures virtually perfect double sideband mixer response. Best noise temperatures are typically obtained with a mixer conversion loss of 0.5 to 1.5 dB giving uncorrected receiver and mixer noise temperatures of 50K and 42K respectively at 300 and 400 GHz. The measured double sideband receiver noise temperature is less than 100K from 270 GHz to 425 GHz with a best value of 48K at 376 GHz, within a factor of five of the quantum limit. The 270–425 GHz receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii. Preliminary tests of a similar junction design in a full height 230 GHz mixer block indicate large conversion gain and receiver noise temperatures below 50K DSB from 200–300 GHz. Best operation is again achieved with the mixer tuned for 0.5–1.5 dB conversion loss which at 258 GHz resulted in receiver and mixer noise temperature of 34K and 27K respectively.  相似文献   

5.
We report on techniques to broaden the intermediate frequency (IF) bandwidth of the BerkeleyIllinoisMaryland Array (BIMA) 1mm SuperconductorInsulatorSuperconductor (SIS) heterodyne receivers by combining fixed tuned Double Side Band (DSB) SIS mixers and wideband Monolithic Microwave Integrated Circuit (MMIC) IF amplifiers. To obtain the flattest receiver gain across the IF band we tested three schemes for keeping the mixer and amplifier as electrically close as possible. In Receiver I, we connected separate mixer and MMIC modules by a 1 stainless steel SMA elbow. In Receiver II, we integrated mixer and MMIC into a modified BIMA mixer module. In Receiver III, we devised a thermally split block in which mixer and MMIC can be maintained at different temperatures–in this receiver module the mixer at 4 K sees very little of the 10–20 mW heat load of the biased MMIC at 10 K. The best average receiver noise we achieved by combining SIS mixer and MMIC amplifier is 45 50 K DSB for LO = 215–240 GHz and below 80 K DSB for LO = 205 270 GHz. Over an IF frequency band of 1 – 4 GHz we have demonstrated receiver DSB noise temperatures of 40 – 60 K. Of the three receiver schemes, we feel Receiver III shows the most promise for continued development.  相似文献   

6.
We accurately measured the noise temperature and conversion loss of a cryogenically cooled Schottky diode operating near 800 GHz, using the UCB/MPE Submillimeter Receiver at the James Clerk Maxwell Telescope. The receiver temperature was in the range of the best we now routinely measure, 3150 K (DSB). Without correcting for optical loss or IF mismatch, the raw measurements set upper limits ofT M=2850 K andL M=9.1 dB (DSB), constant over at least a 1 GHz IF band centered at 6.4 GHz with an LO frequency of 803 GHz. Correction for estimated optical coupling and mismatch effects yieldsT M=1600 K andL M=5.5 dB (DSB) for the mixer diode itself. These values indicate that our receiver noise temperature is dominated by the corner cube antenna's optical efficiency and by mixer noise, but not by conversion loss or IF mismatch. The small fractional IF bandwidth, measured mixer IF band flatness from 2 to 8 GHz, and similarly good receiver temperatures at other IF frequencies imply that these values are representative over a range of frequencies near 800 GHz.  相似文献   

7.
A heterodyne receiver based on a 1/3 reduced height rectangular waveguide SIS mixer with two mechanical tuners has been built for astronomical observations of molecular transitions in the 230 GHz frequency band. The mixer used an untuned array (RnCj3, Rn70 ) of four Nb/AIOx/Nb tunnel junctions in series as a nonlinear mixing element. A reasonable balance between the input and output coupling efficiencies has been obtained by choosing the junction number N=4. The receiver exhibits DSB (Double Side Band) noise temperature around 50 K over a frequency range of more than 10 GHz centered at 230 GHz. The lowest system noise temperature of 38 K has been recorded at 232.5 GHz. Mainly by adjusting the subwaveguide backshort, the SSB (Single Side Band) operation with image rejection of 15 dB is obtained with the noise temperature as low as 50 K. In addition, the noise contribution from each receiver component has been studied further. The minimum SIS mixer noise temperature is estimated as 15 K, pretty close to the quantum limit v/k11 K at 230 GHz. It is believed that the receiver noise temperatures presented are the lowest yet reported for a 230 GHz receiver using untuned junctions.  相似文献   

8.
We developed a low noise dual channel receiver with 100GHz and 150GHz band, which is used to make the simultaneous observation with two bands. The SIS mixers are used in both bands. The constructed dewar for the receiver has a performance with a vacuum of 10–8torr and a temperature of 4.2K. The receiver noise temperature is 50K(DSB) for 100GHz band and 80K(DSB) for 150GHz band, respectively. In order to achieve the simultaneous observations, the quasioptical system is precisely designed, and also evaluated by measurements in the laboratory. The relative pointing offset between two bands is 3. We have observed the various sources using the receiver since October 1998.  相似文献   

9.
We have developed a 330-370GHz SIS mixer for small-format, heterodyne, astronomical imaging arrays. Fixed-tuned broadband operation is achieved by means of a superconducting radial waveguide probe. A horn-reflector antenna provides high-efficiency optical coupling. Using a variable-temperature cryogenic noise source, we measured a DSB system noise temperature of 32±1K. The mixer contributes 3±3K, supporting the theoretically-predicted result that the noise temperature of a DSB mixer can be less than h/2 (8.6K)  相似文献   

10.
We report results on two full height waveguide receivers that cover the 200–290 GHz and 380–510 GHz atmospheric windows. The receivers are part of the facility instrumentation at the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. We have measured receiver noise temperatures in the range of 20K–35K DSB in the 200–290 GHz band, and 65–90K DSB in the 390–510 GHz atmospheric band. In both instances low mixer noise temperatures and very high quantum efficiency have been achieved. Conversion gain (3 dB) is possible with the 230 GHz receiver, however lowest noise and most stable operation is achieved with unity conversion gain.A 40% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner full height waveguide mixer block. The tuned Nb/AlO x /Nb tunnel junctions incorporate an end-loaded tuning stub with two quarter-wave transformer sections to tune out the large junction capacitance. Both 230 and 492 GHz SIS junctions are 0.49µm2 in size and have current densities of 8 and 10 kA/cm2 respectively.Fourier Transform Spectrometer (FTS) measurements of the 230 and 492 GHz tuned junctions show good agreement with the measured heterodyne waveguide response.  相似文献   

11.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the RnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

12.
We have successfully constructed and tested a superconductor-insulator-superconductor (SIS) receiver for operation at 265–280 GHz using 1 m2 area Nb–AlO x –Nb tunnel junctions fabricated at Stony Brook. The best performance to date is a double sideband (DSB) receiver noise temperature of 129 K at 278 GHz. We find that suppression of the Josephson pair currents with a magnetic field is essential for good performance and a stable DC bias point. Fields as high as 280 gauss have been used with no degradation of mixing performance. We illustrate the improvement in the intermediate frequency (IF) output stability with progressively increasing magnetic fields.  相似文献   

13.
A waveguide SIS heterodyne receiver using a Nb/AlOX/Nb junction has been built for astronomical observations of molecular transitions in the frequency range 600 GHz - 635 GHz, and has been successfully used at the Caltech Submillimeter Observatory (CSO). We report double sideband (DSB) receiver noise temperatures as low as 245 K at 600 GHz -610 GHz, and near 300 K over the rest of the bandwidth. These results confirm that SIS quasiparticle mixers work well at submillimeter-wave frequencies corresponding to photon energies of at least 90% of the superconductor energy gap. In addition, we have systematically investigated the effect on the receiver performance of the overlap between first-order and second-order photon steps of opposite sign at these frequencies. The receiver noise increases by as much as 40% in the region of overlap. We infer potential limitations for operating submillimeter-wave Nb/AlOx/Nb mixers.  相似文献   

14.
We report the development of a low noise heterodyne receiver optimized for astronomical observations in the 650 GHz atmospheric window, and specifically for the CO(J=65) line at 691.5 GHz. The system is based on an open structure SIS heterodyne mixer pumped by a continuously tunable solid state oscillator. A niobium SIS junction double array is placed at the end of an integrated V-Antenna. For broad band impedance matching a combination of microstrip impedance transformer and radial stub was used. Receiver noise temperatures of 550 K DSB at 684 GHz were achieved at a 1.8 K physical temperature. The performance improved substantially when decreasing the temperature from 4.2 to 1.8 K. Comparison of model calculations and Fourier transform direct detection measurements of the tuning structure implies that this effect is likely due to the coincidence of operational frequency and the gap frequency of the niobium.  相似文献   

15.
Millimeter-wave characterization of a heterodyne receiver using (2 m2) Nb/Al-Ox/Nb Superconducting-Insulator-Superconducting (SIS) junctions arrays is reported. The fabrication of the Nb/Al-Ox/Nb SIS junction arrays as a heterodyne mixer is described. The leakage current of these junctions is below 2A at 4.2K and unmeasurable at 2.5K. The receiver gave a noise temperature Double Side Band (DSB) between 63K and 187K over the frequency range 80 to 115 GHz at the first conversion peak. The results are comparable to those obtained with SIS receivers using well researched lead junctions. Contrary to the lead junctions, our mixer using all Nb junctions have proven remarkably stable with respect to thermal cycling, characteristics which are required for space applications. To our knowledge, this is the most reliable low noise receiver operating in this frequency range.  相似文献   

16.
The UCB/MPE Submillimeter Heterodyne Spectrometer is a system for ascronomical spectroscopy in the high-frequency atmospheric windows from 500 to 1000 GHz. It contains a molecular laser local oscillator, a cooled Schottky open structure mixer, a quasi-optical coupling system, and an acousto-optical spectrometer. The compact receiver mounts at the Cassegrain focus of large infrared astronomical telescopes. The receiver noise temperature on the telescope is approximately 3500 K (DSB) during observations of the CO J=76 line at 806.652 GHz. The spectrometer's frequency resolution and instantaneous bandwidth (<2 MHz resolution across 1.1 GHz) are well suited for observations of molecular emission lines from a variety of astronomical sources.  相似文献   

17.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

18.
We have developed and tested a submillimeter waveguide SIS mixer with NbN-MgO-NbN quasiparticle tunnel junctions. The two junction array is integrated in a full NbN printed circuit. The NbN film critical temperature is 15 K and the junction gap voltage is 5 mV. The size of the junctions is 1.4 × 1.4 µm and Josephson critical current density is about 1.5 KA/cm2 resulting in junction RNC product about 40. The inductive tuning circuit in NbN is integrated with each junction in two junction array. A single non contacting backshort was tuned at each frequency in the mixer block.At 306 GHz the minimum DSB receiver noise temperature is as low as 230 K. The sources of the receiver noise and of the limits of the NbN SIS submillimeter mixer improvement are discussed.  相似文献   

19.
A planar quasi-optical Schottky receiver based on the quasi-integrated horn antenna has been developed and tested over the 230–280GHz bandwidth. The receiver consists of a planar GaAs Schottky diode placed at the feed of a dipole-probe suspended on a thin dielectric membrane in an etched-pyramidal horn cavity. The diode has a 1.2m anode diameter and a low parasitic capacitance due to the use of an etched surface channel. The antenna-mixer results in a measured DSB conversion loss and noise temperature at 258GHz of 7.2dB±0.5dB and 1310K±70K, respectively, at room temperature. The design is compatible with SIS mixers, and the low cost of fabrication and simplicity makes it ideal for submillimeter-wave imaging arrays requiring a 10–20% bandwidth.  相似文献   

20.
An integrated 3mm-wave Schottky diode mixer and pseudomorphic high-electron-mobility transistor (PHEMT) IF amplifier with record noise performance at room temperature is described. The design has shown the room-temperature double-sideband (DSB) receiver noise temperature TRDSB of 190 K at 100 GHz due to a very low conversion loss in the full-height waveguide mixer and an ultra-low noise of the PHEMT IF amplifier. The receiver noise temperature has been reduced by a factor of 1.5 in comparison with the best previously reported 3mm-wave Schottky diode mixer receiver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号