共查询到20条相似文献,搜索用时 0 毫秒
1.
A capillary electrophoresis with laser-induced fluorescence detection method for the analysis of free amino acids (AA) in human plasma was developed. A mixture of 16 AA was on-capillary derivatized with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) and separated inside the capillary in less than 30 min using 70 mM borax-3.5 mM SDS pH 9.3 as running buffer. Four plasma samples from a healthy donor and patients suffering from phenylketonuria, propionic acidemia, and tyrosinemia type II were studied. Repeatabilities calculated as intra-day RSD (n = 3) values for the AA involved in these aminoacidopathies (glycine, phenylalanine, and tyrosine) were in the range of 0.3 to 1.2% for migration time and 3.7 to 8.2% for peak height. Reproducibilities calculated as inter-day RSD (n = 4) values for the same AA were between 0.7 and 1.4% for migration time and 4.7 and 9.1% for peak height. A fast qualitative analysis allowed the identification of the corresponding disease by comparing the electrophoretic profiles from the patient and the healthy donor and noting the increased level of the specific AA accompanying each individual disease. The results of the quantitative analysis for glycine, phenylalanine, and tyrosine in the plasma samples studied using the developed method showed a good agreement with those provided by the Center of Diagnosis of Molecular Diseases using a standard method for AA analysis. 相似文献
2.
Over the past few years, a large number of studies have been prepared that describe the analysis of peptides and proteins using capillary electrophoresis (CE) and laser-induced fluorescence (LIF). These studies have focused on two general goals: (i) development of automatic, selective and quick separation and detection of mixtures of peptides or proteins; (ii) generation of new methods of quantitation for very low concentrations (nm and subnanomolar) of peptides. These two goals are attained with the use of covalent labelling reactions using a variety of dyes that can be readily excited by the radiation from a commonly available laser or via the use of noncovalent labelling (immunoassay using a labelled antibody or antigen or noncovalent dye interactions). In this review article, we summarize the works which were performed for protein and peptide analysis via CE-LIF. 相似文献
3.
This paper reports the development of a method based on capillary electrophoresis with laser-induced fluorescence detection for the simultaneous determination of thiouracil (TU) and phenylthiouracil (PhTU) with high sensitivity (nanomolar range, i.e., attomoles detected). After derivatization with 5-iodoacetamidofluorescein, the analytes were separated by capillary zone electrophoresis using 20 mM phosphate buffer (pH 10.0) and quantified by fluorescence detection. The linearity range, precision, recovery, and detection limits were determined, and the method was shown to be applicable for the determination of TU and PhTU in spiked feed samples and urine. 相似文献
4.
Py-1 and Py-6 are novel amino-reactive fluorescent reagents. The names given to them reflect that they consist of a pyrylium group attached to small aromatic moieties. Upon reaction with a primary amine there is a large spectral shift in the reagent, rendering them effectively fluorogenic. In this study, these reagents were used to label a test protein, (human serum albumin), and the sample was analyzed by capillary electrophoresis and laser-induced fluorescence detection. Detection limits after a 60 min labeling reaction at 22 degrees C (Py-1) and 50 degrees C (Py-6) were 6.5 ng/mL (98 pM) for Py-1 and 1.2 ng/mL (18 pM) for Py-6. Separation of immunoglobulin G (IgG), human serum albumin, lipase, and myoglobin after labeling with Py-6 were performed. The method was further modified to make it amenable to automation. Unlike many other amino reactive reagents used to label protein amino groups, reaction with Py-1 and Py-6 do not alter the charge of the protein and the advantage of this with respect to electrophoretic separations is discussed. 相似文献
5.
A fundamental premise in CE relies heavily on the assumption that temperature within the capillary is accurately known and controlled. Theoretical calculations for sample zone and BGE temperature during voltage application are presented. We propose that transient elevation of the sample zone temperature allowed for denaturing and renaturing of proteins in the presence of a fluorescent dynamic labeling reagent. Comparison with the extent of labeling possible with standard on-column dynamic labeling in the absence of elevated temperatures showed order-of-magnitude increases in the fluorescence detection sensitivity of proteins with low surface hydrophobicity. As a result, this represents an example where excess heating in the sample zone during electrophoresis can be exploited advantageously. 相似文献
6.
7.
Benturquia N Couderc F Sauvinet V Orset C Parrot S Bayle C Renaud B Denoroy L 《Electrophoresis》2005,26(6):1071-1079
Serotonin or 5-hydroxytryptamine (5-HT) is a major neurotransmitter in the central nervous system. In this work, a method for analyzing 5-HT in brain microdialysis samples using a commercially available capillary electrophoresis (CE) system has been developed. A pH-mediated in-capillary preconcentration of samples was performed, and after separation by capillary zone electrophoresis, native fluorescence of 5-HT was detected by a 266 nm solid-state laser. The separation conditions for the analysis of 5-HT in standard solutions and microdialysates have been optimized, and this method has been validated on both pharmacological and analytical bases. Separation of 5-HT was performed using a 80 mmol/L citrate buffer, pH 2.5, containing 20 mmol/L hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and +30 kV voltage. The detection limit was 2.5 x 10(-10) mol/L. This method allows the in vivo brain monitoring of 5-HT using a simple, accurate CE measurement in underivatized microdialysis samples. 相似文献
8.
An LIF detector was integrated into a CE system which uses a ball lens to focus the laser beam on the CE capillary. The detector employs an ellipsoid that is glued on the capillary window, to permit the collection of the fluorescence in the capillary. This 'trapped' fluorescence stays in the capillary because the angle of the silica/air interface is greater than the critical angle. The performance of this new detector setup is found to be identical to the collinear setup using the same ball lens. An application to the analysis of FITC-labeled IgG was optimized using a 14 cm effective length capillary. The LOD of an FITC-labeled IgG2 at an excitation wavelength of 488 nm was 150 pg/mL, which was 10 times better than the LOD recorded with slab gel silver staining. Using a tetramethylrhodamine (TAMRA)-labeled IgG2 and a 532 nm excitation wavelength the LOD is 50 pg/mL. The electropherograms of four different commercial FITC conjugates of IgG were studied. The presence of aggregates was observed in two samples while close kinetics of reduction was observed between free aggregates and high aggregates concentration samples. The integrated LIF detector provides an extremely powerful and convenient tool for antibody analysis and should be useful for therapeutic MAb control in pharmaceutical facilities. 相似文献
9.
We present a fast detection of M467T, the major mutation causing cystinuria, by capillary electrophoresis version of single-strand conformation polymorphism (SSCP). The DNA fragment (317 bp) carrying the point mutation was amplified by polymerase chain reaction (PCR) on the exon 8 of the SLC3A1 gene, which encodes for the transmembrane glycoprotein rBAT, a part of the active cystine and dibasic amino acids transporter. The complementary strands of the fragment were labeled by fluorescein and TAMRA, respectively. Thus, the electromigration of both strands was recorded independently as a laser-induced fluorescence (LIF) signal, what enabled an effective optimization of separation conditions. The injected sample was denatured by immersing the inlet of the separation capillary into a vial with 0.1 M solution of NaOH prior to analysis. Under optimum conditions, the SSCP analysis in poly(vinyl alcohol) (PVA)-coated silica-fused capillary of an effective length of 15 cm, filled with 4% linear polyacrylamide (LPA) solution, was accomplished in approximately 6 min. The experimentally observed mobility shifts of single-stranded DNA (ssDNA) fragments were compared to the appearance of their calculated two-dimensional conformations using Version 3.0 of MFOLD software. The number of nucleotides involved in the duplex regions of theoretical structures correlates well with their real migration order in the sieving medium. 相似文献
10.
On-line concentration and separation of biologically active amines and acids by capillary electrophoresis (CE) in conjunction with laser-induced fluorescence using an Nd:YAG laser at 266 nm under discontinuous conditions is presented. The suitable conditions for simultaneous analysis of amines and acids were: samples were prepared in a solution (pH* 3.1) consisting of 10 mM citric acid, 89% acetonitrile (ACN), and water; a capillary was filled with 1.5 M Tris-borate (TB) buffer (pH 10.0); and the anodic vial contained PTG10 buffer (pH* 9.0) that consists of 50 mM propanoic acid, Tris, 10% glycerol, and water. After injecting a large-volume sample, amines and acids were separately stacked at the front (cathodic side) and back (anodic side) of the acidic sample zone, mainly because of changes in their electrophoretic mobilities as a result of changes in pH, viscosity, and electric field when high voltage was applied. When the sample was injected at 15 kV for 360 s, the concentration limits of detection (LODs) for 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were 0.27 and 0.31 nM, respectively, which are about 400- and 800-fold sensitivity improvements when compared to those injected at 1 kV for 10 s. For the analysis of amines, samples were prepared in 100 mM citric acid (pH* 1.8) containing 89% ACN and both the capillary and anodic vial were filled with 400 mM PTG20 (propanoic acid, Tris, 20% glycerol, and water) at pH* 4.5. Using a large injection volume (15 kV for 360 s), we achieved concentration LODs of 17 pM and 0.3 nM for tryptamine and epinephrine, which are about 5200- and 14,000-fold sensitivity improvements, respectively, in comparison with those injected at 1 kV for 10 s. The features of simplicity (no sample pretreatment), rapidity (12 min), and sensitivity for identification of amines and acids of interest in urine samples show diagnostic potential of the two approaches developed in this study. 相似文献
11.
Rapid and subnanomolar assay of recombinant human erythropoietin by capillary electrophoresis using NanoOrange precolumn labeling and laser‐induced fluorescence detection 下载免费PDF全文
Nannan Pang Yu Bai Yu Zhou Xia Yang Zhengxiang Zhang Honggang Nie Xiaofang Fu Huwei Liu 《Journal of separation science》2014,37(16):2233-2238
Because of less functionally critical carbohydrate sectors that contributed to the stability, efforts have been made to quantify intact recombinant human erythropoietin. A simple, rapid capillary electrophoresis with laser‐induced fluorescence method for the assay of recombinant human erythropoietin was developed, with a limit of detection of intact recombinant human erythropoietin at subnanomolar concentration (up to 10 ng/mL or 3 × 10?10 M), which is among the lowest reported. High sensitivity was accomplished by precolumn derivatization with the noncovalent dye NanoOrange. Capillary electrophoresis separation and reaction conditions were carefully manipulated for avoiding microheterogeneity of glycoforms and inhomogeneity of multiple labeling products. The fluorescence signal was linear over the range of 10 ng/mL–10 μg/mL, corresponding to the detection requirement of recombinant human erythropoietin in biofluids and pharmaceutical samples, as demonstrated by a real sample analysis. Although the salt in reaction mixtures showed a detrimental effect on the fluorescence of the derivatives, this method could tolerate a certain amount of salt, extending its application in biofluid analysis. In addition, zero‐order fluorescence emission kinetics was obtained, indicating that the rapid decay of recombinant human erythropoietin was derived from a self‐quenching effect. 相似文献
12.
A microfabricated, inexpensive, reusable glass capillary electrophoresis chip and a laser-induced fluorescence system were developed in-house for the rapid DNA-based analysis of genetically modified organisms (GMOs). The 35S promoter sequence of cauliflower mosaic virus and the terminator of the nopaline synthase (NOS) gene from Agrobacterium tumefaciens were both detected since they are present in most genetically modified organisms. The detection of genetically modified soybean in the presence of unaltered soybean was chosen as a model. Lectin, a plant-specific gene, was also detected for confirmation of the integrity of extracted DNA. The chip was composed of two glass plates, each 25 x 76 mm, thermally bonded together to form a closed structure. Photomasks with cross-topology were prepared rapidly by using polymeric material instead of chrome plates. The widths of the injection and separation channels were 30 and 70 microm, respectively, the effective separation length 4.5 cm. The glass slide was etched to a depth of 30 microm for both the injection and separation channel. The cost of the chip was less than 1 $ and required 2 days for photomask preparation and microfabrication. The separation and detection of polymerase chain reaction-amplified NOS, 35S, and lectin sequences (180, 195, and 181 bp, respectively) was completed in less than 60 s. As low as 0.1% GMO content was detectable by the proposed system after 35 and 40 amplification cycles for 35S and NOS, respectively, using 25 ng of extracted DNA as starting material. This corresponds to only 20 genome copies of genetically modified soybean. 相似文献
13.
Separation and detection of amino acid metabolites of Escherichia coli in microbial fuel cell with CE 下载免费PDF全文
In this work, CE‐LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l ‐carnosine and l ‐alanyl‐glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE‐LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20–300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l ‐carnosine, l ‐alanyl‐glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L. 相似文献
14.
N-methyl-D-glucamine improves the laser-induced fluorescence capillary electrophoresis performance in the total plasma thiols measurement 总被引:1,自引:0,他引:1
Zinellu A Carru C Galistu F Usai MF Pes GM Baggio G Federici G Deiana L 《Electrophoresis》2003,24(16):2796-2804
We describe an ultrarapid capillary electrophoresis with laser-induced fluorescence (CE-LIF) method for total plasma thiols measurement. Reduced thiols by 10% tri-n-butylphosphine (TBP) were derivatized in 10 min at room temperature with 5-iodoacetamidofluorescein (5-IAF) as fluorescent reagent. We show that CE-LIF allows a baseline separation of total plasma cysteinylglycine, homocysteine, cysteine, and glutathione in less than 5 min when N-methyl-D-glucamine in run buffer was added. CE was compared with high-performance liquid chromatography (HPLC) with fluorescence detection. The Bland-Altman test and Passing-Bablok regression demonstrates that the results obtained by CE-LIF and by HPLC are highly comparable. The simplified procedure of sample preparation, the short incubation and fast separation times, the high specificity, sensitivity and reproducibility, and the lower cost of analysis suggest that our proposed method can be considered valuable for the automation analysis in a routine laboratory. 相似文献
15.
Silica nanoparticles for separation of biologically active amines by capillary electrophoresis with laser-induced native fluorescence detection 总被引:1,自引:0,他引:1
This paper describes the analysis of biologically active amines by capillary electrophoresis (CE) in conjunction with laser-induced native fluorescence detection. In order to simultaneously analyze amines and acids as well as to achieve high sensitivity, 10 mM formic acid solutions (pH < 4.0) containing silica nanoparticles (SiNPs) were chosen as the background electrolytes. With increasing SiNP concentration, the migration times for seven analytes decrease as a result of increase in electroosmotic flow (EOF) and decrease in their electrophoretic mobilities against EOF. A small EOF generated at pH 3.0 reveals adsorption of SiNPs on the deactivated capillary wall. The decreases in electrophoretic mobilities with increasing SiNP concentration up to 0.3x indicate the interactions between the analytes and the SiNPs. Having a great sensitivity (the limits of detection at a signal-to-noise ratio (S/N) = 3 of 0.09 nM for tryptamine (TA)), high efficiency, and excellent reproducibility (less than 2.4% of the migration times), this developed method has been applied to the analysis of urinal samples with the concentrations of 0.50 +/- 0.02 microM, 0.49 +/- 0.04 microM, and 74 +/- 2 microM for TA, 5-hydroxytryptamine, and tryptophan, respectively. The successful examples demonstrated in this study open up a possibility of using functional nanoparticles for the separation of different analytes by CE. 相似文献
16.
Two new red luminescent asymmetric squarylium dyes (designated "Red-1c and Red-3") have been shown to exhibit absorbance shifts to longer wavelengths upon the addition of protein, along with a concomitant increase in fluorescence emission. Specifically, the absorbance maxima for Red-1c and Red-3 dyes are 607 and 622 nm, respectively, in the absence of HSA, and 642 and 640 nm in the presence of HSA, making the excitation of their protein complexes feasible with inexpensive and robust diode lasers. Fluorescence emission maxima, in the presence of HSA, are 656 and 644 nm for Red-1c and Red-3, respectively. Because of the inherently low fluorescence of the dyes in their free state, Red-1c and Red-3 were used as on-column labels (that is, with the dye incorporated into the separation buffer), thus eliminating the need for sample derivatization prior to injection and separation. A comparison of precolumn and on-column labeling of proteins with these squarylium dyes revealed higher efficiencies and greater sensitivities for on-column labeling, which, when conducted with a basic, high-salt content buffer, permitted baseline resolution of a mixture of five model proteins. LOD for model proteins, such as transferrin, alpha-lactalbumin, BSA, and beta-lactoglobulin A and B, labeled with these dyes and analyzed by CE with LIF detection (CE-LIF) were found to be dependent upon dye concentration and solution pH, and are as low as 5 nM for BSA. Satisfactory linear relationships between peak height (or peak area) and protein concentration were obtained by CE-LIF for this on-column labeling method with Red-3 and Red-1c. 相似文献
17.
Wirtz M Schumann CA Schellenträger M Gäb S Vom Brocke J Podeschwa MA Altenbach HJ Oscier D Schmitz OJ 《Electrophoresis》2005,26(13):2599-2607
Reactive oxygen molecules are formed in vivo as by-products of normal aerobic metabolism. All organisms dependent on oxygen are inevitably exposed to these species so that DNA damage can occur in both genomic and mitochondrial DNA (mtDNA). In order to determine endogenous DNA damage we have developed an analytical method that involves the isolation and hydrolysis of genomic DNA or mtDNA, the labeling of modified and unmodified nucleotides and micellar electrokinetic chromatography with laser-induced fluorescence detection. With this method we have found etheno-adenine, thymine glycol, uracil, hypoxanthine, and 5-methylcytosine. These were identified by the addition of internal standards to the genomic or mtDNA. There are a large number of other signals in the electropherograms of mtDNA that we have never found in genomic DNA analysis because they are at lower concentration in the genome. In the DNA of untreated patients with chronic lymphocytic leukemia (CLL), uracil and high levels of etheno-adenine were found, which can be explained by antioxidant enzyme alterations and oxidative stress in the CLL lymphocytes. 相似文献
18.
High‐speed separation and detection of amino acids in laver using a short capillary electrophoresis system 下载免费PDF全文
A high‐speed separation method of capillary MEKC with LIF detection had been developed for separation and determination of amino acids in laver. The CE system comprised a manual slotted‐vial array (SVA) for sample introduction that could improve the separation efficiency by reducing injection volume. Using a capillary with 80 mm effective separation length, the separation conditions for amino acids were optimized. Applied with the separation electric field strength of 300 V/cm, the ten amino acids could be completely separated within 2.5 min with 10 mol/L Na2HPO4–NaOH buffer (pH = 11.5) including 30 mmol/L SDS. Theoretical plates for amino acids ranged from 72 000 to 40 000 (corresponding to 1.1–2.0 μm plate heights) and the detection limits were between 25 and 80 nmol/L. Finally, this method was applied to analyze the composition of amino acids in laver and eight known amino acids could be found in the sample. The contents of five amino acids, tyrosine, glutamic acid, glycine, lysine, and aspartic acid that could be completely separated in real sample were determined. The recoveries ranged from 82.3% to 123% that indicated the good reliability for this method in laver sample analysis. 相似文献
19.
We describe a segmental filling method for the analysis of SYPRO Red labeled sodium dodecyl sulfate (SDS)-proteins (SRSPs) by capillary electrophoresis-laser induced fluorescence (CE-LIF) with electroosmotic counterflow of poly(ethylene oxide) (PEO). It is shown that SDS and salt play a crucial role in determining the fluorescence intensity of the SRSP. Although the fluorimetric measurements reveal that the SRSPs fluoresce strongly in Tris-borate (TB) buffer containing 0.1% SDS and high concentrations of NaCl (100 mM), these conditions are not appropriate to CE in view of Joule heating. To overcome that impediment, we applied a plug of 0.1% SDS (1/5 to 1/3 of the injection volume) prior to injection of samples (0.64 microL) prepared in TB buffer containing 50 mM NaCl and SYPRO Red. When using a background electrolyte of 0.6% PEO in TB buffer containing NaCl, electroosmotic counterflow of the analytes allows one to concentrate large sample volumes (up to 1/3 of effective capillary length) in 21 min, with detection of 0.35 and 0.10 nM for bovine serum albumin and casein, respectively. With a linear dynamic range from 10 nM to 5 microM, this method provides the capability of determining the concentration of casein in cow's milk as 0.45 +/- 0.03 mM (n = 5). 相似文献
20.
Manuel Lombardo-Agüí Ana M. García-CampañaLaura Gámiz-Gracia Carmen Cruces Blanco 《Journal of chromatography. A》2010,1217(15):2237-2242
A method for the simultaneous determination of four fluoroquinolones of veterinary use (ciprofloxacin, danofloxacin, enrofloxacin and sarafloxacin) in two complex matrixes, such as bovine raw milk and pig kidney, has been established and validated. The method is based on the use of capillary electrophoresis (CE) coupled with a very sensitive detection mode, such as laser induced fluorescence (LIF) detection, due to the fact the all the compounds selected show native fluorescence. In order to achieve high selectivity in the sample treatment procedure, a commercially available molecularly imprinted polymer has been used for the solid phase extraction of the analytes. Once the retention and elution processes were optimized, the final extract was analyzed by CE-LIF using a 325 nm He–Cd laser. Optimum separation was obtained in a 70 cm × 75 μm capillary using a 125 mM phosphoric acid solution at pH 2.8 with 36% methanol as background electrolyte. The method provided very low detection limits, ranging from 0.17 to 0.98 μg/kg for milk and 1.10 to 10.5 μg/kg for kidney, with acceptable precision and satisfactory recoveries. 相似文献