首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid "green" solvent systems composed of room-temperature ionic liquids (ILs) and poly(ethylene glycols) (PEGs) may have enormous future potential. Solvatochromic absorbance probe behavior is used to assess the physicochemical properties of the mixture composed of IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and PEG (average molecular weights of 200, 400, 600, and 1500) at ambient conditions. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., E(T)(N), indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][PF 6] + PEG mixtures to be even higher than that of neat [bmim][PF(6)], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (pi*) obtained separately from the electronic absorbance response of probe N, N-diethyl-4-nitroaniline shows a trend similar to E(T)(N ) thus confirming the unusually high dipolarity/polarizability of the [bmim][PF(6)] + PEG mixtures. Similar to E(T)(N ) and pi*, the HBD acidity (alpha) of [bmim][PF(6)] + PEG mixtures is also observed to be anomalously high. Contrary to what is observed for E(T)(N ), pi*, and alpha, the hydrogen-bond accepting (HBA) basicity (beta) of the [bmim][PF(6)] + PEG mixtures is observed to be lower than that predicted from ideal additive behavior indicating diminished HBA basicity of the mixture as compared to its neat components. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within [bmim][PF(6)] + PEG mixtures. It is demonstrated that [bmim][PF(6)] + PEG mixtures possess physicochemical properties that are superior to those of either the neat IL or the neat PEG.  相似文献   

2.
The effect of water and several organic solvents on the density, viscosity, and conductivity of ionic liquids (ILs) 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-n-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and 1-n-butyl-3-methylimidazolium trifluoroacetate ([bmim][CF3CO2]) was studied at 298.15 K in wide composition ranges. The density, viscosity, and conductivity of the three neat ILs were also determined at various temperatures. Upon the basis of the molar conductivity of the mixtures and that of the neat ILs of the same viscosity, the degree of dissociation of ILs in the solutions was investigated. It can be deduced that the organic solvents enhance the ionic association of the ILs, the effect depending on the solvent dielectric constant, while water promotes dissociation significantly due to its high dielectric constant and its ability to form strong hydrogen bonds with the anions of the ILs.  相似文献   

3.
Physicochemical properties of aqueous micellar solutions may change in the presence of ionic liquids (ILs). Micelles help to increase the aqueous solubility of ILs. The average size of the micellar aggregates within aqueous sodium dodecylbenzene sulfonate (SDBS) is observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to increase in a sudden and drastic fashion as the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) is added. Similar addition of [bmim][PF(6)] to aqueous sodium dodecyl sulfate (SDS) results in only a slow gradual increase in average aggregate size. While addition of the IL [bmim][BF(4)] also gives rise to sudden aggregate size enhancement within aqueous SDBS, the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF(4)]), and inorganic salts NaPF(6) and NaBF(4), only gradually increase the assembly size upon their addition. Bulk dynamic viscosity, microviscosity, dipolarity (indicated by the fluorescent reporter pyrene), zeta potential, and electrical conductance measurements were taken to gain insight into this unusual size enhancement. It is proposed that bmim(+) cations of the IL undergo Coulombic attractive interactions with anionic headgroups at the micellar surface at all [bmim][PF(6)] concentrations in aqueous SDS; in aqueous SDBS, beyond a critical IL concentration, bmim(+) becomes involved in cation-π interaction with the phenyl moiety of SDBS within micellar aggregates with the butyl group aligned along the alkyl chain of the surfactant. This relocation of bmim(+) results in an unprecedented size increase in micellar aggregates. Aromaticity of the IL cation alongside the presence of sufficiently aliphatic (butyl or longer) alkyl chains on the IL appear to be essential for this dramatic critical expansion in self-assembly dimensions within aqueous SDBS.  相似文献   

4.
A hybrid, potentially green solvent system composed of tetraethylene glycol (TEG) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) was investigated across all mole fractions with regard to the solvent properties of the mixture. For this purpose, a suite of absorbance- and fluorescence-based solvatochromic probes were utilized to explore solute-solvent and solvent-solvent interactions existing within the [bmim][PF(6)] + TEG system. These studies revealed an interesting and unusual synergistic solvent effect. In particular, a remarkable "hyperpolarity" was observed in which the E(T) value, comprising dipolarity/polarizability and hydrogen bond donor (HBD) acidity contributions, at intermediate mole fractions of the binary mixture well exceeded that of the most polar pure component (i.e., [bmim][PF(6)]). Independently determined dipolarity/polarizability (pi*) and HBD acidity (alpha) Kamlet-Taft values for the [bmim][PF(6)] + TEG mixtures were also observed to be anomalously high at intermediate mole fractions, whereas hydrogen bond acceptor (HBA) basicities (beta values) were much more in line with the ideal arithmetic values predicted on a mole fraction basis. Two well-established fluorescent polarity probes (pyrene and pyrene-1-carboxaldehyde) further illustrated notable hyperpolarity within [bmim][PF(6)] + TEG mixtures. Moreover, the steady-state fluorescence anisotropy of the molecular rotor rhodamine 6G and the excimer-to-monomer fluorescence ratio exhibited by the fluidity probe 1,3-bis-(1-pyrenyl)propane demonstrated that solute rotation and microfluidity within the [bmim][PF(6)] + TEG mixture were significantly reduced compared with expectations based on simple solvent mixing. A solvent ordering via formation of HBD/HBA complexes involving the C-2 proton of the [bmim(+)] cation and oxygen atoms of TEG, as well as interactions between [PF(6)(-)] and the terminal hydroxyl groups of TEG, is proposed to account for the observed behavior. Further spectroscopic evidence of strong intersolvent interactions occurring within the [bmim][PF(6)] + TEG mixture was provided, inter alia, by substantial frequency shifts in the [PF(6)(-)] asymmetric stretching mode observed in the infrared spectra as TEG was incrementally added to [bmim][PF(6)]. Overall, our observations contribute to a growing literature advocating the notion that ionic liquids and certain organic solvents form ordered, nanostructured, or microsegregated phases upon mixing.  相似文献   

5.
The group contribution equation of state (GC-EOS) was applied to predict the phase behavior of binary systems of ionic liquids of the homologous families 1-alkyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate with CO2. Pure group parameters for the new ionic liquid functional groups [-mim][PF6] and [-mim][BF4] and interaction parameters between these groups and the paraffin (CH3, CH2) and CO2 groups were estimated. The GC-EOS extended with the new parameters was applied to predict high-pressure phase equilibria in binary mixtures of the ionic liquids [emim][PF6], [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], and [omim][BF4] with CO2. The agreement between experimental and predicted bubble point data for the ionic liquids was excellent for pressures up to 20 MPa, and even for pressures up to about 100 MPa, the agreement was good. The results show the capability of the GC-EOS to describe phase equilibria of systems consisting of ionic liquids.  相似文献   

6.
We have found the new nucleophilic fluorination reaction of some halo- and mesylalkanes to the corresponding fluoroalkanes with KF in the presence of [bmim][BF4] under various reaction conditions. 2-(3-Methanesulfonyloxypropoxy)naphthalene (1) was used as a model compound to optimize this fluorination reaction. Whereas the fluorination of the mesylate 1 with KF in an organic solvent such as CH3CN at 100 degrees C occurred hardly even after 24 h, the same reaction in ionic liquids, [bmim][BF4], as a reaction solvent was completed within 1.5 h, affording the wanted product 2-(3-fluoropropoxy)naphthalene 2a (85%) together with the alkene byproduct 2c (10%). Very interestingly, however, the addition of water (5 equiv) completely eliminated the formation of the undesired alkene 2c and thus gave higher yield of 2a (92%, entry 2). The use of acetonitrile as a cosolvent did not affect the reactivity of the fluorination. The presence of a proper amount of cosolvent was rather desirable (94% yield of 2a). We performed fluorination reactions with other ionic liquids ([bmim][PF6], [bmim][SbF6], [bmim][OTf], and [bmim][N(Tf)2], and two other cosolvents, to find the optimal ionic liquid and cosolvent. Nine different compounds were examined, including the 10 g-synthesis of 2-(fluoromethyl)naphthalene in 93% of isolated yield.  相似文献   

7.
Francesca D'Anna  Renato Noto 《Tetrahedron》2007,63(47):11681-11685
The stability constants relevant to the formation of amine/p-nitrophenol ion pairs have been determined in [bmim][BF4] solution, in the presence of butylamine, piperidine, and triethylamine, by using spectrophotometric measurements. In order to evaluate how the ion pair stability is affected by ionic liquid structure, piperidine has been chosen as model amine for studies in [bmim][PF6], [bmim][NTf2], [bm2im][NTf2] and in several [bmim][BF4]/1,4-dioxane binary mixtures. Data obtained in ionic liquid solutions have been compared with those previously reported in conventional organic solvents.  相似文献   

8.
We have studied temperature dependent IR spectra of the C-H stretching modes of the imidazolium ring in [bmim][PF(6)], [bmim][Tf(2)N], [emim][Tf(2)N], [hmim][Tf(2)N], and [bmim][BF(4)]. Temperatures in this study are from 278 to 348 K at an interval of 10 K. Spectra of the C-H stretching modes have been deconvoluted using our previous computer program of the Voigt-lineshape function. Frequency shifts, Lorentzian spectral widths, and band absorbance were examined as a function of temperature. In order to interpret the observed behaviors, we have developed a simple mechanical model as well as a chemical equilibrium model. The model analyses suggest that enthalpy changes for the cluster and/or ion-pair breaking reactions in the liquid state are several kJ mol(-1) endothermic, and the degree of dissociations of ion pairs or hydrogen bonded clusters is in the range from 0.3 to 0.9 with different magnitudes for the five ionic liquids.  相似文献   

9.
Equations of state based on the statistical associating fluid theory for potentials of variable range (SAFT-VR) and the perturbed chain statistical associating fluid theory (PC-SAFT) have been used to model the PVT behavior of ionic liquids and the solubility of H2S in six imidazolium-based ionic liquids. The studied systems included [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], [bmim][NTF2] and [hmim][NTF2] at various temperatures and pressures.For pure components, parameters of the models have been obtained by fitting the models to experimental data on liquid densities; the average relative deviation between the calculated and experimental densities for ionic liquids is less than 2.42% in the PC-SAFT model and 5.44% in the SAFT-VR approach, the latter which incorporates the square-well potential for short-range interactions. In both models an additional term has been added to account for dipole-dipole interactions between solute molecules resulting from the permanent charges on the chain molecules of the solvents. The model parameters have also been correlated as functions of the molecular weight of the solvents. For binary mixtures of ionic liquids and H2S, the association interactions between H2S molecules and between the ionic liquids and H2S molecules have also been taken into account in both approaches, using binary interaction coefficients. The results show an average deviation of less than 5% in the calculation of the mole fraction of H2S in the ionic liquids. The effect of inclusion of the polar term has been studied for binary systems in both models.  相似文献   

10.
Ajioka T  Oshima S  Hirayama N 《Talanta》2008,74(4):903-908
Possible use of 8-sulfonamidoquinoline derivatives as chelate extraction reagents for solvent extraction of several divalent metal cations using an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) as extraction phase was investigated as fundamental approach to develop novel extraction reagents for ionic liquid extraction system. The studied reagents were able to be used as extractants for the metal cations in the [bmim][PF(6)] extraction system. Furthermore, their extractability in the [bmim][PF(6)] system was superior to that in chloroform system. Most of the extracted species were (hydrated) neutral complexes, whereas, in use of the derivative having trifluoromethyl group, Cd(2+) was extracted as anionic complex accompanied with anion-exchange process.  相似文献   

11.
We have continued the study of halide nucleophilicity in ionic liquids, concentrating on the effect of changing the anion ([BF(4)](-), [PF(6)](-), [SbF(6)](-), [OTf](-), and [N(Tf)(2)](-)) when the cation is [bmim](+) (where bmim = 1-butyl-3-methylimidazolium). It was found that the nucleophilicities of all the halides were lower in all of the ionic liquids than in dichloromethane. Changing the anion affected the order of halide nucleophilicity, e.g., in [bmim][BF(4)] the order of nucleophilicity was Cl(-)>Br(-)>I(-) while in [bmim][N(Tf)(2)] the order was Cl(-)相似文献   

12.
The transient absorption spectra and photoinduced electron-transfer process of duroquinone (DQ) in mixed binary solutions of ionic liquid (IL) [bmim][PF6] and acetonitrile (MeCN) have been investigated by laser photolysis at an excitation wavelength of 355 nm. A spectral blue shift of 3DQ* was observed in the IL/MeCN mixtures compared to MeCN. At lower VIL(volume fraction of IL), the interaction between DQ and the solvent is dominant, and the decay rate constant (kobs) of 3DQ* increases steadily with the increasing of VIL; to the contrary, at higher VIL, the network structures due to the hydrogen bond and viscosity are dominant, and the decay rate constant decreases obviously with increasing VIL. A critical point (turnover) was observed at VIL = approximately 0.30. The dependence of the observed growth rate (kgr) of the photoinduced electron-transfer (PET) products on VIL is complex and shows a special change; kgr first decreases with increasing VIL, then increases, and finally decreases slowly with further increasing of VIL. It is speculated that the PET process in the mixture can be affected by factors including the local structure and the reorganization energy of the solvent and salt and cage effects. The change of local structure of [bmim][PF6]/MeCN is supported by following the steady-state fluorescence behavior of the mixture, in combination with the molecular dynamics simulation of the thermodynamic property. The results revealed that the degree of self-aggregation of monomeric cations (bmim+) to associated forms increases with increasing VIL. This is in good agreement with the laser photolysis results for the same solutions.  相似文献   

13.
We report a molecular dynamics study of the interface between water and (macroscopically) water-immiscible room-temperature ionic liquids "ILs", composed of PF6(-) anions and butyl- versus octyl-substituted methylimidazolium+ cations (noted BMI+ and OMI+). Because the parameters used to simulate the pure ILs were found to exaggerate the water/IL mixing, they have been modified by scaling down the atomic charges, leading to better agreement with the experiment. The comparison of [OMI][PF6] versus [BMI][PF6] ILs demonstrates the importance of the N-alkyl substituent on the extent of solvent mixing and on the nature of the interface. With the most hydrophobic [OMI][PF6] liquid, the "bulk" IL phase is dryer than with the [BMI][PF6] liquid. At the interface, the OMI+ cations retain direct contacts with the bulk IL, whereas the more hydrophilic PF6(-) anions gradually dilute in the local water micro-environment and are thus isolated from the "bulk" IL. The interfacial OMI+ cations are ordered with their imidazolium moiety pointing toward the aqueous side and their octyl chains toward the IL side of the interface. With the [BMI][PF6] liquid, the system gradually evolves from an IL-rich to a water-rich medium, leading to an ill-defined interfacial domain with high intersolvent mixing. As a result, the BMI+ cations are isotropically oriented "at the interface". Because the imidazolium cations are more hydrophobic than the PF6(-) anions, the charge distribution at the interface is heterogeneous, leading to a positive electrostatic potential at the interface with the two studied ILs. Mixing-demixing simulations on [BMI][PF6]/water mixtures are also reported, comparing Ewald versus reaction field treatments of electrostatics. Phase separation is very slow (at least 30 ns), in marked contrast with mixtures involving classical organic liquids, which separate in less than 0.5 ns at the microscopic level. The results allow us to better understand the specificity of the aqueous interfaces with hydrophobic ionic liquids, compared with classical organic solvents, which has important implications as far as the mechanism of liquid-liquid ion extraction is concerned.  相似文献   

14.
Interactions and dynamics in ionic liquids   总被引:1,自引:0,他引:1  
Precise dielectric spectra have been determined at 25 degrees C over the exceptionally broad frequency range of 0.1 相似文献   

15.
The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.  相似文献   

16.
The amino induced elimination of benzisoxazole into the relevant o-cyanophenolate ion (Kemp elimination) has been studied in [bmim][BF 4] solution at 298 K. To have information about the interactions between reactants and ionic liquid, the reaction has been carried out at different temperatures (293-313 K). Several primary, secondary, and tertiary amines have been used to study the effect of amine structure on the reaction rate. The collected data show that the amine structure seems to have a crucial role in determining the reaction rate. Furthermore, as different cation or anion structures of an ionic liquid can significantly affect its properties, the title reaction has been performed in four different ionic liquids ([bmim][PF6], [bmim][NTf 2], [bm 2im][NTf 2], and [bmpyrr][NTf 2]), using pyrrolidine and piperidine as model amines. An H-donor negative solvent (MeOH and [bmim][NTf 2]) effect on reaction rate was detected. Finally, a narrow range of activation parameters was calculated both for the reaction induced by different amines and for pyrrolidine and piperidine, in the presence of different ILs. This fact suggests the occurrence of an "early" transition state.  相似文献   

17.
Novel microemulsions: ionic liquid-in-ionic liquid   总被引:2,自引:0,他引:2  
The hydrophobic IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) can be dispersed in hydrophilic IL propylammonium formate (PAF) with the aid of surfactant AOT, and [bmim][PF(6)]-in-PAF microemulsions are formed.  相似文献   

18.
The electrochemistry and electrocatalysis of a number of heme proteins entrapped in agarose hydrogel films in the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) have been investigated. UV-vis and FTIR spectroscopy show that the heme proteins retain their native structure in agarose film. The uniform distribution of hemoglobin in agarose-dimethylformamide film was demonstrated by atomic force microscopy. Cyclic voltammetry shows that direct electron transfer between the heme proteins and glassy carbon electrode is quasi-reversible in [bmim][PF(6)]. The redox potentials for hemoglobin, myoglobin, horseradish peroxidase, cytochrome c, and catalase were found to be more negative than those in aqueous solution. The charge-transfer coefficient and the apparent electron-transfer rate constant for these heme proteins in [bmim][PF(6)] were calculated from the peak-to-peak separation as a function of scan rate. The heme proteins catalyze the electroreduction of trichloroacetic acid and tert-butyl hydroperoxide in [bmim][PF(6)]. The kinetic parameter I(max) (maximum current at saturation concentration of substrate) and the apparent K(m) (Michaelis-Menten constant) for the electrocatalytic reactions were evaluated.  相似文献   

19.
The rotational correlation time (tau(2R)) is determined for D(2)O (polar) and C(6)D(6) (apolar) in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF(6)]) by measuring (2)H (D) nuclear magnetic resonance spin-lattice relaxation time (T(1)) in the temperature range from -20 to 110 degrees C. The tau(2R) ratio of water to benzene (tau(WB)) was used as a measure of solute-solvent attraction. tau(WB) is 0.73 and 0.52 in [bmim][Cl] and [bmim][PF(6)], respectively, whereas the molecular volume ratio is as small as 0.11. The slowdown of the water dynamics compared to the benzene dynamics in ionic liquids is interpreted by the Coulombic attractive interaction between the polar water molecule and the anion. As for the anion effect, the rotational dynamics of water solvated by Cl(-) is slower than that solvated by PF(6) (-), whereas the rotational dynamics of benzene is similar in the two ionic liquids. This is interpreted as an indication of the stronger solvation by the anion with a larger surface charge density. The slowdown of the water dynamics via Coulombic solvation is actually significant only at water concentrations lower than approximately 9 mol dm(-3) at room temperature, and it is indistinguishable at temperatures above approximately 100 degrees C. The quadrupolar coupling constants determined for D(2)O and C(6)D(6) in the ionic liquids were smaller by a factor of 2-3 than those in the pure liquid state.  相似文献   

20.
Ion association of the ionic liquid [bmim][Cl] in acetonitrile and in water was studied by dielectric spectroscopy for salt concentrations c ≤ 1.3 M at 298.15 K and by measurement of molar electrical conductivities, Λ, of dilute solutions (c ≤ 0.006 M) in the temperature range 273.15 ? T/K ≤ 313.15. Whilst acetonitrile solutions of [bmim][Cl] exhibit moderate ion pairing, with an association constant of K°(A) ≈ 60 M(-1) and increasing with temperature, [bmim][Cl] is only weakly associated in water (K°(A) ≈ 6 M(-1)) and ion pairing decreases with rising temperature. Only contact ion pairs were detected in both solvents. Standard-state enthalpy, entropy and heat capacity changes of ion association were derived, as well as the activation enthalpy of charge transport and the limiting conductivity of the cation, λ(∞)?([bmim](+)). These data, in conjunction with effective solvation numbers obtained from the dielectric spectra, suggest that the solvation of [bmim](+) is much weaker in water than in acetonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号