首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosensitized oxidation of guanine (G) by the triplet state of xanthone (XT) and the repair for photo-damaged G(-H)(·) by ferulic acid (FCA) were investigated using the laser flash photolysis technique. The rate constants of the reaction of triplet state of XT with G and with FCA were determined as 4.5×10(9) and 8.0×10(9) L mol(-1) s(-1), respectively. Laser exposure was performed on the N(2)-saturated acetonitrile/water (v/v, 1:1) solution containing G, XT and FCA. The transient absorption spectra indicated that the triplet state of XT first reacted with G predominantly to form the oxidized radical G(-H)(·). The radical G(-H)(·) was rapidly repaired by FCA, and the rate constant for the repair reaction was determined as 1.1×10(9) L mol(-1) s(-1). These results demonstrated that non-enzymatic repair is a feasible method for repairing photosensitized DNA bases oxidation.  相似文献   

2.
Laser flash photolysis of diazodibenzocyclohaptadiene gives the title carbene which is readily observed and which reacts by hydrogen abstraction to give the corresponding radical.  相似文献   

3.
The mechanistic aspects of the photosensitized reactions of a series of oxime ethers were studied by steady-state (product studies) and laser flash photolysis methods. Nanosecond laser flash photolysis studies have shown that chloranil-sensitized reactions of the oxime ethers result in the formation of the corresponding radical cations. The radical cation species react with nucleophiles such as MeOH by clean second-order kinetics with rate constants of (0.7-1.4) x 10(6) M(-1) s(-1). Only a small steric effect is observed in these reactions, which is taken as an indication that the reaction center is not the O-alkyl moiety, but rather somewhere else in the molecule. Product studies in a polar nonnucleophilic solvent (MeCN) revealed that in order for the oxime ether radical cation to react more readily, alpha-protons must be available on the alkyl group. The O-methyl (1), O-ethyl (2), and O-benzyl (3) acetophenone oximes all reacted readily to give acetophenone oxime as the major product (as well as an aldehyde derived from the O-alkyl group), whereas O-tert-butyl acetophenone oxime (4) did not. The product formation can be explained by a mechanism that involves electron transfer followed by proton transfer (alpha to the oxygen) and subsequent beta-cleavage. When using 3 in MeOH, a change in the product formation is observed, the most important difference being the presence of benzyl alcohol rather than benzaldehyde as the major product. On the basis of the data from LFP and steady-state experiments, it is suggested that the competing mechanism under these conditions involves electron transfer, followed by a nucleophilic attack on the nitrogen, a MeOH-assisted [1,3]-proton transfer, and subsequent loss of benzyl alcohol. This mechanism is supported by DFT (B3LYP/6-31G) and AM1 calculations.  相似文献   

4.
The property of the lowest excited triplet states of 1,8-dihydroxyanthraquinone (DHAQ) was investigated by using time-resolved laser flash photolysis at 355nm in organic solvents, i.e. acetonitrile and cyclohexane. The transient absorption spectra of the excited triplet DHAQ were obtained in acetonitrile, which have an absorption maximum at 480nm and two broad absorption bands around 350 and 650nm. 3DHAQ(*) is efficiently quenched by triphenylamine (TPA) via photoinduced electron transfer pathway, which was testified by the finding of TPA radical cation. In addition, aniline derivatives such as N,N-dimethylaniline (DMA), 3,5,N,N-tetramethylaniline (TMA), 4-dimethylaminobenzoic acid (DMABA) and dimethyl-p-toluidine (DMT) could also quench 3DHAQ(*) rapidly. Evidence for electron transfer interaction with anilines in acetonitrile was obtained from transient spectral characterization of formed radicals. Experimental k(q) values approach the diffusion-controlled rate limit, and decrease significantly from DMT (1.85x10(10)M-1s-1) to DMABA (1.95x10(9)M-1s-1). These k(q) values depend on the charge density on the "N" atom of anilines, which could be quantified by Hammett sigma constant.  相似文献   

5.
Steady state absorption and fluorescence as well as the time resolved absorption studies in the pico and subpicosecond time domain have been performed to characterize the excited singlet and triplet states of Michler's ketone (MK). The nature of the lowest excited singlet (S1) and triplet (T1) states depends on the polarity of the solvent - in nonpolar solvents they have either pure nπ * character or mixed character of nπ * and ππ * states but in more polar solvents the states have CT character. Concentration dependence of the shapes of the fluorescence as well the excited singlet and triplet absorption spectra provide the evidence for the association of the MK molecules in the ground state.  相似文献   

6.
The photochemistry of three 5-allyloxy-tetrazoles, in methanol, acetonitrile and cyclohexane was studied by product analysis and laser flash photolysis. The exclusive primary photochemical process identified was molecular nitrogen elimination, with formation of 1,3-oxazines. These compounds were isolated in reasonable yields by column chromatography on silica gel and were fully characterized. DFT(B3LYP)/6-31G(d,p) calculations predict that these 1,3-oxazines can adopt two tautomeric forms (i) with the NH group acting as a bridge connecting the oxazine and phenyl rings and (ii) with the -N=bridge and the proton shifted to the oxazine ring. Both tautomeric forms are relevant in the photolysis of oxazines in solution. Secondary reactions were observed, leading to the production of phenyl vinyl-hydrazines, enamines, aniline and phenyl-isocyanate. Transient absorption, detected by laser flash photolysis, is attributed to the formation of triplet 1,3-biradicals generated from the excited 5-allyloxy-tetrazoles. The 1,3-biradicals are converted to 1,6-biradicals by proton transfer, which, after intersystem crossing, decay to generate the products. Solvent effects on the photoproduct distribution and rate of decomposition are negligible.  相似文献   

7.
The rate coefficients for reactions of hydroxyl radical with aromatic hydrocarbons were measured in acetonitrile using a novel laser flash photolysis method. Comparison of kinetic data obtained in acetonitrile with those obtained in aqueous solution demonstrates an unexpected solvent effect on the reactivity of hydroxyl radical. In particular, reactions of hydroxyl radical with benzene were faster in water than in acetonitrile, and by a significant factor of 65. Computational studies, at the B3LYP and CBS-QB3 levels, have confirmed the rate enhancement of hydroxyl radical addition to benzene via calculation of the transition states in the presence of explicit solvent molecules as well as a continuum dielectric field. The origin of the rate enhancement lies entirely in the structures of the transition states and not in the pre-reactive complexes. The calculations reveal that the hydroxyl radical moiety becomes more anionic in the transition state and, therefore, looks more like hydroxide anion. In the transition states, solvation of the incipient hydroxide anion is more effective with water than with acetonitrile and provides the strong energetic advantage for a polar solvent capable of hydrogen bonding. At the same time, the aromatic unit looks more like the radical cation in the transition state. The commonly held view that hydroxyl radical is electrophilic in its reactions with DNA bases is, therefore, strongly dependent on the ability of the organic substrate to stabilize the resulting radical cation.  相似文献   

8.
Bacteriochlorin a (BCA) is a potential photosensitizer for photodynamic therapy of cancer. It has been shown previously that the photoefficiency of the dye is mainly dependent on singlet oxygen (1O2) generation. Nanosecond laser flash photolysis was used to produce and to investigate the excited triplet state of the dye in methanol, phosphate buffer and dimiristoyl-L-alpha-phosphatidylcholine (DMPC) liposomes. The transients were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yield of singlet-triplet intercrossing. The lifetime of the BCA triplet state was measured at room temperature. The triplet-state quantum yield is quite high in methanol (0.7) and in DMPC (0.4) but only 0.095 in phosphate buffer. In the last case, BCA is in a monomer-dimer equilibrium, and the low value of the quantum yield observed was ascribed to the fact the triplet state is only formed by the monomers.  相似文献   

9.
Conclusions The rate constants were measured for the annihilation of the triplet exciplexes of quinones with 4-phenylaniline in various solvents and the prototropic equilibrium constants in the primary exciplex were also determined. Hydrogen bonding between the radicals in the exciplex leads to an acceleration of radiationless deactivation of the exciplex to the ground state and retardation of the dissociation of the exciplexes into radical-ions. The solvation of the exciplexes of an alcohol is accompanied by a decrease in the rate of deactivation of the exciplexes to the ground state.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2587–2590, November, 1986.  相似文献   

10.
The photochemistry of tetrasulfur tetranitride (1) was studied in hexane solution by the laser flash photolysis technique (LFP). The experimental findings were interpreted using the results of previous matrix isolation studies (Pritchina, E.A.; Gritsan, N.P.; Bally, T.; Zibarev, A.V. Inorg. Chem. 2009, 48, 4075) and high-level quantum chemical calculations. LFP produces two primary intermediates, one of which is the boat-shaped 8-membered cyclic compound (2) and the other is the 6-membered S(3)N(3) cyclic compound carrying an exocyclic (S)-N═S group (3). The primary products 2 and 3 absorb a second photon and undergo transformation to the 6-membered S(3)N(3) cycle carrying an exocyclic (N)-S≡N group (4), which is very unstable and converts back to intermediate 3. The quantum yield of the primary product formation is close to unity even though the quantum yield of photodegradation of 1 is low (~0.01). Thus, 1 is a photochromic compound undergoing in solution the thermally reversible photochemical isomerization. The mechanism of the photochromic process was established, and the rate constants of the elementary reactions were measured.  相似文献   

11.
12.
Laser flash photolysis and an external magnetic field have been used to study the interaction of two quinone molecules, namely, 9,10-anthraquinone (AQ) and 2-methyl-1,4-naphthoquinone, commonly known as menadione (MQ), with the RNA base uracil (U) and two of its derivatives, 1,3-dimethyluracil (dmU) and uridine (dU). We have conducted our studies in homogeneous organic and heterogeneous micellar media in order to investigate the effect of media on the molecules and any change in reactivity on account of substitution. In organic homogeneous medium, both the quinones have behaved similarly with the bases. Here U has undergone both electron transfer (ET) and hydrogen (H) transfer, while dU and dmU have failed to exhibit any ET. Failure to support ET has been attributed to keto-enol tautomerism, which has been found to have a significant role in determining the occurrence of ET from these pyrimidine bases. However, in SDS micelles some variations regarding the reactivity of these molecules have been discerned. The variations are 2-fold. Here ET from U has been found to get completely eclipsed by a dominant H abstraction with both the quinones, and AQ reveals a difference in the extent of H abstraction with the bases in SDS. With U and dU, the prevailing H abstraction with AQ has succeeded in formation of only AQH(*), while dmU has produced both AQH(*) and AQH(2), the latter being formed by two successive H abstraction. Explanations of this intriguing behavior with U and its derivatives with quinone molecules have been the main concern in this work.  相似文献   

13.
Curcumin [bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] was studied by means of UV-VIS absorption spectroscopy and nanosecond laser flash photolysis in 1,4-dioxane-water mixtures in a series of dioxane-water volume ratios. The transient characteristics were found to be dependent on the amount of water. In pure dioxane the triplet state of the molecule in its enolic form was detected (lambda(max) = 720 nm, tau = 3.2 micros), whereas upon water addition, the diketo form was found to prevail, because of the perturbation of intramolecular H-bonded structure. This led to hydrogen abstraction from dioxane by curcumin triplet state and the formation of the corresponding ketyl radical (lambda(max) = 490 nm, tau approximately 10 micros). Laser flash photolysis measurements, carried out in solvents of different polarity and proticity (benzene, cyclohexane and various alcohols), allowed the transient assignments to be confirmed, supporting our interpretation.  相似文献   

14.
The photochemistry of maleimide in aqueous solution is governed by the coexistence of up to three different triplet states, the keto triplet (lambda(max)=250, 330 nm, lambda(min)=290 nm, pK(a)=4.4+/-0.1, tau=5 micros), the deprotonated or enolate triplet (lambda(max)=360, 260 nm, lambda(min)=320 nm, shoulder at 370-380 nm) and a dimer triplet. This biradical is formed by the addition of the keto triplet to the double bond of a ground state maleimide in competition with electron transfer, (k( (3)MI+MI)=2.6 x 10(9) dm(3) mol(-1) s(-1)). Its spectrum is identical to that of the maleimide H-adduct radical (lambda(max)=370-380 (broad), 255 nm (narrow), lambda(min)=290 nm) and its lifetime is 110 ns. While protolysis is confined to maleimide and aqueous solutions, the dimer triplet is also found in acetonitrile. Dimer triplet formation is also observed with N-ethylmaleimide. Time-resolved conductometry and buffer experiments were used to characterise excited state protolysis. Multi-wavelength "global analysis" of the time profiles allowed the separation of the transient spectra and study of the kinetics of the monomer and dimer triplets. The cyclobutane dimer yield (determined by GC) is independent of maleimide concentration. This indicates that the dimer triplet does not contribute significantly to the initiation of free-radical polymerisation. Time-dependent Hartree-Fock calculations agree with the experimental data and further confirm the proposed mechanisms.  相似文献   

15.
The photochemistry of three novel t-butylperester derivatives of fluorenone was examined and compared with unsubstituted fluorenone and a mono-t-butylperester of benzophenone using both conventional microsecond and nanosecond laser flash photolysis. On conventional microsecond flash photolysis in 2-propanol, all four fluorenone compounds gave transient absorption in the region 300–400 nm due to a ketyl radical formed from the abstraction of a hydrogen atom from the solvent by the upper excited triplet n—π* state of the fluorenone chromophore. This assignment was confirmed by a pH-dependent study on the transient absorption spectra. The nitro-t-butylperester derivative of fluorenone gave additional absorption above 400 nm due to species associated with the nitro group. No evidence for benzoyloxy radical formation could be found in non-hydrogen-atom-donating solvents with microsecond flash photolysis which is associated with homolysis of the perester groups. On nanosecond laser flash photolysis of the fluorenone compounds at 355 nm excitation in acetonitrile and hexa-fluorobenzene, transient absorptions were observed in the region 320–640 nm due to the corresponding triplet states. All the t-butylperester derivatives showed residual absorbances at longer time delays which were tentatively assigned to the corresponding benzoyloxy radicals produced by homolysis of the perester groups. In contrast, the mono-t-butylperester of benzophenone, included for comparison only, showed very weak transient absorption in the region 320–640 nm compared with that of the strong triplet of benzophenone under the same excitation conditions. The triplet absorptions and lifetimes of the fluorenone compounds were correlated with their photopolymerization activities in bulk methylmethacrylate monomer. In oxygenated solutions, the triplet absorptions of fluorenone and benzophenone were effectively quenched; however, long-lived transient growths were observed for all the t-butylperester derivatives. The intensities of these novel transient absorptions appear to correlate with the total number of t-butylperester groups in the fluorenone molecule and tentative assignments are discussed.  相似文献   

16.
《Polymer Photochemistry》1982,2(6):419-428
Poly(styrene sulphone) (PSS) and poly(butene-1 sulphone) (PBS) were irradiated in dilute solutions (dioxane and other solvents) with single 15-ns flashes of 265-nm light. Changes in the light scattering intensity (LSI) and the optical density (OD) after the flash were recorded with aerated solutions. It turned out that, with both polymers, the rate of LSI decrease (due to main-chain scission) is correlated to the rate of fragment diffusion. Optical density measurements with PSS revealed the existence of a short-lived species (λmax = 500 nm), probably a singlet excimer (τ < 25 ns) which is considered a precursor in the main-chain scission process. The existence of macroradicals, even after fragment separation, was inferred from an absorption band below 400 nm decaying with a half-life of 40 ms. In the absence of oxygen, main-chain scission and cross-linking occur simultaneously. Therefore, the presence of oxygen, which acts as a fixing agent for main-chain breaks, is prerequisite for using the photodegradation of poly(olefin sulphones) as a probe for studying the dynamics of polymers in solution.  相似文献   

17.
Photochemical processes of benzophenone (BP) and xanthone (XT) with tryptophan (TrpH) and tyrosine (TyrOH) were studied using the laser flash photolysis technique.It has been observed that the triplet state of BP and XT reacted with TrpH and TyrOH by hydrogen transfer with the formation of BP and XT ketyl radicals and oxidized radicals of TrpY and TyrOY.The related rate constants of these reactions were determined in this paper.The free energy changes (G) of these reactions suggested that the proposed hydrogen transfer mechanism was thermodynamically feasible.These results provide theoretical foundation for further studying structural effects on the photochemical behaviors of proteins with triplet state BP and XT.  相似文献   

18.
19.
《Chemical physics letters》1987,136(5):436-440
The yield of escaping benzenesulfonyl radical was found to be increased by a magnetic field. The yield at 1.2 T was 1.53 ± 0.05 times that at 0 T. From the observed magnetic field effects, the present reaction was proved to occur from triplet radical pairs.  相似文献   

20.
The photophysical and photochemical properties of the UV-A-absorbing phototoxic drug cyamemazine (CMZ) (2-cyano-10-(3-[dimethylamino]-2-methyl-propyl)-phenothiazine) have been investigated in neutral buffered aqueous solutions. The transient absorbances of the hydrated electrons, of the first excited triplet state (3CMZ*) with a characteristic absorption band peaking at 420 nm and of the radical cation (*CMZ+) (maximum absorbance at 500 nm) have been observed by 355 nm laser flash spectroscopy of deaerated solutions. All these transient species are formed by monophotonic processes and react with oxygen. Bimolecular reaction rate constants of *CMZ+ and 3CMZ* with O2 are 2 x 10(7) M(-1) s(-1) and 4 x 10(9) M(-1) s(-1), respectively. The 3CMZ* reacts only sluggishly (reaction rate constant, 9 x 10(6) M(-1) s(-1)) with tryptophan chosen as a Type-I photodynamic substrate. Steady-state irradiations with 365 nm light demonstrate that CMZ is rapidly photolyzed (quantum yield, 0.04) in O2-saturated solutions leading to oxidation of the sulfur atom and of the side-chain nitrogen of CMZ. This photoproduct (2-cyano-10-(3-[dimethylamino, N-oxide]-2-methyl-propyl)-5-oxide-phenothiazine), is a good Type-I and Type-II photodynamic photosensitizer producing singlet oxygen in high yield (approximately 0.45) and could play a major role in the phototoxicity of CMZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号