首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of nonadiabatic electron pumping in the system of three coupled quantum dots (QDs) attached to the leads is discussed. We have found out that periodical changing of energy level position in the middle QD results in non-zero mean tunneling current appeared due to nonadiabatic non-equilibrium processes. The same principle can be used for fabrication of a new class of semiconductor electronic devices based on non-stationary non-equilibrium currents. As an example we propose a nanometer quantum emitter with non-stationary inverse level occupation achieved by electron pumping.  相似文献   

2.
We study theoretically current quantization in the charge turnstile based on the superconductor-normal-metal single-electron transistor. The quantization accuracy is limited by either Andreev reflection or by Cooper-pair-electron cotunneling. The rates of these processes are calculated in the "above-the-threshold" regime when they compete directly with the lowest-order tunneling. By shaping the ac gate voltage drive it should be possible to achieve the metrological accuracy of 10;{-8}, while maintaining the quantized current on the level of 30 pA, just by one turnstile with realistic parameters using aluminum as a superconductor.  相似文献   

3.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

4.
In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.  相似文献   

5.
6.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

7.
M ÁVILA 《Pramana》2014,83(1):161-164
The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a quantum-dot-confined electron spin qubit working adiabatically in the nanoscale regime (e.g., in the MeV range of energies) and include nonadiabatic corrections in it. If the decoherence times of a quantum dot computer are ~100 ns [J M Kikkawa and D D Awschalom, Phys. Rev. Lett. 80, 4313 (1998)] then the predicted number of one qubit gate (primitive) operations of the Loss–DiVincenzo quantum computer in such an interval of time must be >10 10. However, if the quantum-dot-confined electron spin qubit is very excited (i.e., the semiclassical limit) the number of operations of such a computer would be approximately the same as that of a classical computer. Our results suggest that for an adiabatic quantum computer to operate successfully within the decoherence times, it is necessary to take into account nonadiabatic corrections.  相似文献   

8.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

9.
王启文  红兰 《物理学报》2012,61(1):17107-017107
在考虑Rashba自旋-轨道耦合的条件下, 采用二次幺正变换和变分方法研究了二维抛物量子点中由于电子与体纵光学声子的耦合作用形成的极化子在基态Zeeman分裂能级上的自旋弛豫过程.这一过程主要是通过吸收或发射一个形变势或压电声学声子完成.具体分析了强、弱耦合两种极限下极化子自旋弛豫率与外磁场、量子点半径、Landau因子参数、Rashba自旋轨道耦合参数的变化关系. 关键词: 自旋弛豫 极化子 Rashba自旋轨道耦合 量子点  相似文献   

10.
Diluted magnetic semiconductors(DMSs)have traditionally been employed to implement spin-based quantum computing and quantum information processing.However,their low Curie temperature is a major hurdle in their use in this field,which creates the necessity for wide bandgap DMSs operating at room temperature.In view of this,a single-electron transistor(SET)with a global back-gate was built using a wide bandgap ZnO nanobelt(NB).Clear Coulomb oscillations were observed at 4.2 K.The periodicity of the Coulomb diamonds indicates that the Coulomb oscillations arise from single quantum dots of uniform size,whereas quasi-periodic Coulomb diamonds correspond to the contribution of multi-dots present in the ZnO NB.By applying an AC signal to the global back-gate across a Coulomb peak with varying frequencies,single-electron pumping was observed;the increase in current was equal to the production of electron charge and frequency.The current accuracy of about 1%for both single-and double-electron pumping was achieved at a high frequency of 25 MHz.This accurate single-electron pumping makes the ZnO NB SET suitable for single-spin injection and detection,which has great potential for applications in quantum information technology.  相似文献   

11.
The two-electron wave function and charge distribution are obtained in a symmetric double quantum dot in a weak variable electric field. It is shown that the action of a variable field under resonance conditions when the perturbation frequency is close to the frequency of the quantum transition leads to the appearance of electron density oscillations between the dots having the characteristic form of beats. However, the Coulomb repulsion between the electrons strongly “quenches” the amplitude of the beats even in a resonant variable field.  相似文献   

12.
We report on the resonant optical pumping of the | ± 1? spin states of a single Mn dopant in an InAs/GaAs quantum dot which is embedded in a charge tunable device. The experiment relies on a W scheme of transitions reached when a suitable longitudinal magnetic field is applied. The optical pumping is achieved via the resonant excitation of the central Λ system at the neutral exciton X(0) energy. For a specific gate voltage, the redshifted photoluminescence of the charged exciton X- is observed, which allows a nondestructive readout of the spin polarization. An arbitrary spin preparation in the | + 1? or |-1? state characterized by a polarization near or above 50% is evidenced.  相似文献   

13.
We report measurements of a tunable double quantum dot, operating in the quantum regime, with integrated local charge sensors. The spatial resolution of the sensors allows the charge distribution within the double dot system to be resolved at fixed total charge. We use this readout scheme to investigate charge delocalization as a function of temperature and strength of tunnel coupling, demonstrating that local charge sensing can be used to accurately determine the interdot coupling in the absence of transport.  相似文献   

14.
We have measured the relaxation time, T1, of the spin of a single electron confined in a semiconductor quantum dot (a proposed quantum bit). In a magnetic field, applied parallel to the two-dimensional electron gas in which the quantum dot is defined, Zeeman splitting of the orbital states is directly observed by measurements of electron transport through the dot. By applying short voltage pulses, we can populate the excited spin state with one electron and monitor relaxation of the spin. We find a lower bound on T1 of 50 micros at 7.5 T, only limited by our signal-to-noise ratio. A continuous measurement of the charge on the dot has no observable effect on the spin relaxation.  相似文献   

15.
We demonstrate electrical control of the spin relaxation time T1 between Zeeman-split spin states of a single electron in a lateral quantum dot. We find that relaxation is mediated by the spin-orbit interaction, and by manipulating the orbital states of the dot using gate voltages we vary the relaxation rate W identical withT1(-1) by over an order of magnitude. The dependence of W on orbital confinement agrees with theoretical predictions, and from these data we extract the spin-orbit length. We also measure the dependence of W on the magnetic field and demonstrate that spin-orbit mediated coupling to phonons is the dominant relaxation mechanism down to 1 T, where T1 exceeds 1 s.  相似文献   

16.
We investigate the Kondo effect and spin blockade observed in a many-electron quantum dot and study the magnetic field dependence. At lower fields, a pronounced Kondo effect is found, which is replaced by the spin blockade at higher fields. In an intermediate regime, both effects are visible. We make use of this combined effect to gain information about the internal spin configuration of our quantum dot. We find that the data cannot be explained assuming regular filling of electronic orbitals. Instead, spin polarized filling seems to be probable.  相似文献   

17.
We manipulate a single electron in a fully tunable double quantum dot using microwave excitation. Under resonant conditions, microwaves drive transitions between the (1,0) and (0,1) charge states of the double dot. Local quantum point contact charge detectors enable a direct measurement of the photon-induced change in occupancy of the charge states. From charge sensing measurements, we find T1 approximately 16 ns and a lower bound estimate for T*(2) of 400 ps for the charge two-level system.  相似文献   

18.
We report electronic control and measurement of an imbalance between spin-up and spin-down electrons in micron-scale open quantum dots. Spin injection and detection were achieved with quantum point contacts tuned to have spin-selective transport, with four contacts per dot for realizing a nonlocal spin-valve circuit. This provides an interesting system for studies of spintronic effects since the contacts to reservoirs can be controlled and characterized with high accuracy. We show how this can be used to extract in a single measurement the relaxation time for electron spins inside a ballistic dot (tau(sf) approximately equal to 300 ps) and the degree of spin polarization of the contacts (P approximately equal to 0.8).  相似文献   

19.
We propose a protocol for a controlled experiment to measure a weak value of the electron's spin in a solid state device. The weak value is obtained by a two step procedure--weak measurement followed by a strong one (postselection), where the outcome of the first measurement is kept provided a second postselected outcome occurs. The setup consists of a double quantum dot and a weakly coupled quantum point contact to be used as a detector. Anomalously large values of the spin of a two electron system are predicted, as well as negative values of the total spin. We also show how to incorporate the adverse effect of decoherence into this procedure.  相似文献   

20.
We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance. The scheme is sensitive even to rf fields of just a few microT. In one case, the spin resonance behaves as a driven 3-level lambda system with weak damping; in another one, the dot exhibits remarkably strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with fluctuating resonant positions, evidence of unusual dynamic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号