首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pei Gu  Ming Dao  Yuntian Zhu 《哲学杂志》2013,93(11):1249-1262
This paper analyses slip transfer at the boundary of nanoscaled growth twins in face-centred cubic (f.c.c.) metals for strengthening mechanism. The required stress for slip transfer, i.e. inter-twin flow stress, is obtained in a simple expression in terms of stacking fault energy and/or twin boundary (TB) energy, constriction energy and activation volume. For nanotwinned Al, Cu and Ni, inter-twin flow stress versus twin thickness remarkably shows Hall–Petch relationship. The Hall–Petch slope is rationalized for various reactions of screw and non-screw dislocations at the TB. Additionally, strengthening at the boundary of nanoscaled deformation twins in f.c.c. metals is analysed by evaluating required twinning stress. At small nanograin size, the prediction of deformation twin growth stress shows inverse grain-size effect on twinning, in agreement with recent experimental finding.  相似文献   

2.
邵宇飞  杨鑫  赵星  王绍青 《中国物理 B》2012,21(9):93104-093104
The effects of stacking fault energy, unstable stacking fault energy, and unstable twinning fault energy on the fracture behavior of nanocrystalline Ni are studied via quasicontinuum simulations. Two semi-empirical potentials for Ni are used to vary the values of these generalized planar fault energies. When the above three energies are reduced, a brittle-to-ductile transition of the fracture behavior is observed. In the model with higher generalized planar fault energies, a nanocrack proceeds along a grain boundary, while in the model with lower energies, the tip of the nanocrack becomes blunt. A greater twinning tendency is also observed in the more ductile model. These results indicate that the fracture toughness of nanocrystalline face-centered-cubic metals and alloys might be efficiently improved by controlling the generalized planar fault energies.  相似文献   

3.
W. Liang 《哲学杂志》2013,93(14-15):2191-2220
Novel shape memory behaviour was discovered recently in single-crystalline fcc nanowires of Cu, Ni and Au with lateral dimensions below 5?nm. Under proper thermomechanical conditions, these wires can recover elongations up to 50%. This phenomenon only exists at the nanoscale and is associated with reversible lattice reorientations within the fcc lattice structure driven by surface stresses. Whereas the propagation of partial dislocations and twin planes specific to fcc metals are the required mechanism, only materials with higher propensities for twinning (e.g. Cu and Ni) show this behaviour and those with lower propensities for twinning (e.g. Al) do not. This paper provides an overview of this novel behaviour with a focus on the transformation mechanism, driving force, reversible strain, size and temperature effects and energy dissipation. A mechanism-based micromechanical continuum model for the tensile behaviour is developed. This model uses a decomposition of the lattice reorientation process into a reversible, smooth transition between a series of phase-equilibrium states and a superimposed irreversible, dissipative propagation of a twin boundary. The reversible part is associated with strain energy functions with multiple local minima and quantifies the energy conversion process between the twinning phases. The irreversible part is due to the ruggedness of the strain energy landscape, associated with dislocation nucleation, gliding and annihilation, and characterizes the dissipation during the transformation. This model captures all major characteristics of the behaviour, quantifies the size and temperature effects and yields results which are in excellent agreement with data from molecular dynamics simulations.  相似文献   

4.
Grain-size dependency of deformation twinning has been previously reported in nanocrystalline face-centred-cubic metals, which results in an optimum grain-size range for twin formation. Here, we report, for the first time in experiments, the observed optimum grain sizes for deformation twins in nanocrystalline Cu–Zn alloys which slightly increase with increasing Zn content. This result agrees with the reported trend but is much weaker than predicted by stacking-fault-energy based models. Our results indicate that alloying changes the relationship between the stacking-fault and twin-fault energy and therefore affects the optimum grain size for deformation twinning. These observations should be also applicable to other alloy systems.  相似文献   

5.
6.
Atomistic simulations and experimental nanoindentation tests were used to examine the effect of vacancies on the inception of plastic deformation in Ni. Molecular dynamics have shown the effect of vacancy position on the yield load and demonstrate a variety of mechanisms which are responsible for the inception of plastic deformation during indentation. In cases where the vacancy position is close to regions of high shear stresses the nucleation of dislocations is related to the location of a vacancy; however, homogeneous nucleation of dislocations is also observed for vacancy-containing crystals. Complementary experiments have been used to demonstrate the effect of indenter size on the onset of yielding in the presence of vacancies. Both the simulations and experiments show that larger indenter tips increase the chance of weakening the material in the presence of vacancies.  相似文献   

7.
J. Wang  N. Li  A. Misra 《哲学杂志》2013,93(4):315-327
Σ3 grain boundaries form as a result of either growth twinning or deformation twinning in face centered cubic (fcc) metals and play a crucial role in determining the mechanical and electrical properties and microstructural stability. We studied the structure and stability of Σ3 grain boundaries (GBs) in fcc metals by using topological analysis and atomistic simulations. Atomistic simulations were performed for Cu and Al with empirical interatomic potentials to reveal the influence of stacking fault energy on the morphology of the twinned grains. Three sets of tilt Σ3 GBs were studied with respect to the tilt axis parallel to ?111?, ?112?, and ?110?, respectively. We showed that Σ3{111} and Σ3{112} GBs are thermodynamically stable and the others will dissociate into terraced interfaces regardless of the stacking fault energy. The morphology of the nano-twinned grains in Cu is predicted from the above analysis and found to match with experiments.  相似文献   

8.
周宗荣  王宇  夏源明 《物理学报》2007,56(3):1526-1531
运用分子动力学方法,对γ-TiAl金属间化合物的面缺陷能(层错能和孪晶能)进行了研究. 计算得到γ-TiAl不同滑移系(或孪生系)的整体堆垛层错能曲线,结果表明,γ-TiAl较一般fcc晶体结构的金属可动滑移系(孪生系)的数量减少,在外界条件下呈脆性. 研究孪生系(1/6)〈112〉{111}的弛豫的整体堆垛层错(GSF)能和整体孪晶(GTF)能曲线,对不稳定层错能γusf、稳定层错能γsf和不稳定孪晶能γusf值进行分析,可以预知, γ-TiAl的主要变形机理为孪生系(1/6)〈112〉{111}的孪生和普通滑移系(1/6)〈110〉{111}的滑移,以及超滑移系(1/2)〈011〉{111}的滑移. 关键词: γ-TiAl')" href="#">γ-TiAl 堆垛层错能 孪晶能 分子动力学  相似文献   

9.
The interactions of He with dissociated screw dislocations in face-centered-cubic(fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model.The binding and formation energies of interstitial He in and near Shockley partial cores are calculated.The results show that interstitial He atoms at tetrahedral sites in the perfect fcc lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy.The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites.In addition,the effect of He on the dissociation of screw dislocations are investigated.It is found that He atoms homogeneously distributed in the glide plane can reduce the stacking fault width.  相似文献   

10.
Secondary ion emission from an ion-bombarded binary compound in the ferro- and paramagnetic states has been studied using experimental methods and molecular dynamics simulations. The experiments were performed with a widely used NiPd binary compound, which was bombarded by obliquely incident 10-keV Ar ions. It is established that the intensity of Ni+ and Pd+ ion emission from a polycrystalline NiPd sample decreases significantly when it passes from the ferromagnetic to paramagnetic state. This effect is explained by a change in the surface binding energy and density of surface states at the Fermi level and by a cumulative process related to sputtering. The energies and directions of emission of secondary particles from poly- and single-crystalline NiPd samples in the ferromagnetic state have been jointly studied. It is established that the maximum of the polar angular distribution of secondary particles deviates toward the normal to the irradiated surface with a decrease in their energy. A difference in the azimuthal distribution of emitted Ni and Pd particles has been observed during the bombardment of a (001)NiPd crystal face and explained by specific features of correlated collisions. The best agreement of experimental data with the results of molecular dynamics simulations is obtained if the calculations are performed with allowance for an experimentally established modified composition of the three uppermost surface layers [39].  相似文献   

11.
深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
杨弘  陈民 《物理学报》2006,55(5):2418-2421
采用嵌入原子法对深过冷条件下Ni2TiAl合金的焓和密度进行了分子动力学模拟,模拟获得了比热和密度在1200K至2000K范围内的温度依赖关系. 结果表明过冷条件下Ni2TiAl合金的比热、密度和温度之间存在着线性关系,它们都随着温度的降低而降低. 比热的大小与依据Neumann-Kopp法则估算的结果相近,同时模拟过程中的尺度效应经验证可以忽略. 关键词: 2TiAl合金')" href="#">Ni2TiAl合金 比热 密度 分子动力学模拟  相似文献   

12.
Mechanical properties of nanocrystalline copper under thermal load   总被引:1,自引:0,他引:1  
The material properties of nanocrystallines are known to generally have a strong dependence on their nanoscale morphology, such as the grain size. The Hall-Petch effect states that the mechanical strength of nanocrystalline materials can vary substantially for a wide range of grain sizes; this is attributed to the competition between intergranular and intragranular deformations. We employed classical molecular dynamics simulations to investigate the morphology-dependent mechanical properties of nanocrystalline copper. The degradation of material properties under thermal load was investigated during fast strain rate deformation, particularly for the grain size. Our simulation results showed that the thermal load on the nanocrystalline materials alters the grain-size behavior of the mechanical properties.  相似文献   

13.
In this article, molecular dynamics based simulations were carried out to study the fracture toughness of single crystals of niobium (Nb) and zirconium (Zr). Separate set of simulations were performed with different orientations of crack plane in Nb and Zr. In each case, efforts were made to align the crack front with principal planes of corresponding crystal structure, that was bcc for Nb and hcp for Zr. Deformation in single crystal of Nb and Zr was governed either by twinning or emergence of dislocations from the crack tip and surfaces. The deformation mechanism in single crystal of Nb and Zr also helps in governing the overall toughness of the material, while deforming via twinning leads to higher change in the crack length, whereas dislocations emerging from the crack tip blunts the opening and improves the toughness.  相似文献   

14.
Using molecular dynamics simulations, we show that a simple model of a glassy material exhibits the shear localization phenomenon observed in many complex fluids. At low shear rates, the system separates into a fluidized shear band and an unsheared part. The two bands are characterized by a very different dynamics probed by a local intermediate scattering function. Furthermore, a stick-slip motion is observed at very small shear rates. Our results, which open the possibility of exploring complex rheological behavior using simulations, are compared to recent experiments on various soft glasses.  相似文献   

15.
In the present work, the effects of Ni atoms and vacancy concentrations(0.1%, 0.5%, 1.0%) on the formation process of Cu solute clusters are investigated for Fe–1.24%Cu–0.62%Ni alloys by molecular dynamics(MD) simulations. The presence of Ni is beneficial to the nucleation of Cu precipitates and has little effect on coarsening rate in the later stage of aging. This result is caused by reducing the diffusion coefficient of Cu clusters and the dynamic migration of Ni atoms. Additionally, there are little effects of Ni on Cu precipitates as the vacancy concentration reaches up to 1.0%,thereby explaining the embrittlement for reactor pressure vessel(RPV) steel. As a result, the findings can hopefully provide the important information about the essential mechanism of Cu cluster formation and a better understanding of ageing phenomenon of RPV steel. Furthermore, these original results are analyzed with a simple model of Cu diffusion, which suggests that the same behavior could be observed in Cu-containing alloys.  相似文献   

16.
The long-time dynamics of a single end-tethered chain under shear flow are studied using molecular and Brownian dynamics simulations of a flexible polymer. As observed in previous experiments with tethered DNA [Phys. Rev. Lett. 84, 4769 (2000)], under a flow sheared at constant rate the chain performs a cyclic motion. But, contrary to what has been previously suggested, a well-defined characteristic period exists and it is clearly revealed in the cross spectra of the chain extension along flow and gradient directions. The main cycling time scales like the time needed to stretch the polymer by convection, being about 10 times the relaxation time of the chain in flow. This coherent recursive motion introduces long memory in the fluid and suggests resonance effects under periodic external forcing.  相似文献   

17.
18.
19.
In this work, we elucidate the effect of the less mobile ions on the dynamics of the more mobile ions by molecular dynamics simulations of lithium ions motion in lithium metasilicate glass by freezing some randomly chosen lithium ions (5%, 10% and 25%) at their initial locations at 700 K. A remarkable slowing down of the dynamics of the majority mobile Li ions was observed both in the self-part of the density–density correlation function, Fs(k,t), and in the diffusion coefficients. On the other hand, there is no significant change in the structure. These results show many similarities to the mixed alkali effect (MAE) with mixing of the small content of foreign alkali (10% and 25% of K2O), where large reduction of the dynamics was also observed in both experiments and MD simulations. This immobilization of faster ions causes the large MAE as already discussed in relation to the mechanism of the cooperative ion jump motions. Although of lesser importance, the ion dynamics are influenced by the matrix of oxygen atoms, because the jump motions of Li ions are assisted by the localized motions of oxygen atoms.  相似文献   

20.
徐志欣  李家云  孙民华  姚秀伟 《物理学报》2013,62(18):186101-186101
采用分子动力学方法和镶嵌原子势, 模拟了500个Ni原子(简称Ni500)组成的纳米团簇的等温晶化过程. 通过对纳米Ni团簇的动力学行为和微观结构演变的研究, 发现Ni500在高温时是一步晶化的, 在低温时则呈现出多步晶化的特征. 在多步晶化的过程中, 团簇结构会陷入多个亚稳态结构, 经过原子重排, 进入能量更低的亚稳态, 最后完成晶化. 在多步晶化过程中, 原子的位置重排是通过协同跳跃运动实现的, 其协同运动方式不但有常见的线型协同运动, 也有多个原子的集体平移运动等其他形式. 关键词: 分子动力学模拟 纳米Ni团簇 协同运动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号