首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
固态金属中声子热传递的分子动力学模拟研究   总被引:2,自引:0,他引:2  
固态金属中的热传递是声子和自由电子共同作用的结果。自由电子引起的热导率可以通过电导率,利用Wiedemann-Franz定律得到,声子引起的热导率目前仍然不能进行实验测量,只能借助其他方法来研究。本文采用非平衡分子动力学(NEMD)方法,用镶嵌原子方法(EAM)势能模型,模拟计算了不同厚度(1.760-10.56nm)金属镍薄膜中由于声子-声子作用引起的热导率。然后根据纳米厚度金属薄膜的热导率借助关联式推到宏观尺度下由于声子-声子作用引起的热导率。结果表明,对于纳米厚度金属薄膜,由于声子-声子作用引起的热导率比块体金属镍的热导率小一个数量级;薄膜厚度越小,声子-声子作用引起的热导率越小;对于块体金属镍,由于声子-声子作用引起的热导率约占其总热导率的33.0%左右。  相似文献   

3.
Lattice thermal conductivity can be reduced by introducing point defect, grain boundary, and nanoscale precipitates to scatter phonons of different wave-lengths, etc. Recently, the effect of electron–phonon (EP) interaction on phonon transport has attracted more and more attention, especially in heavily doped semiconductors. Here the effect of EP interaction in n-type P-doped single-crystal Si has been investigated. The lattice thermal conductivity decreases dramatically with increasing P doping. This reduction on lattice thermal conductivity cannot be explained solely considering point defect scattering. Further, the lattice thermal conductivity can be fitted well by introducing EP interaction into the modified Debye–Callaway model, which demonstrates that the EP interaction can play an important role in reducing lattice thermal conductivity of n-type P-doped single-crystal Si.  相似文献   

4.
The temperature dependences of thermal conductivity κ of polycrystalline CVD diamond are measured in the temperature range from 5 to 410 K. The diamond sample is annealed at temperatures sequentially increasing from 1550 to 1690°C to modify the properties of the intercrystallite contacts in it. As a result of annealing, the thermal conductivity decreases strongly at temperatures below 45 K, and its temperature dependence changes from approximately quadratic to cubic. At T > 45 K, the thermal conductivity remains almost unchanged upon annealing at temperatures up to 1650°C and decreases substantially at higher annealing temperatures. The experimental data are analyzed in terms of the Callaway theory of thermal conductivity [9], which takes into account the specific role of normal phonon-phonon scattering processes. The thermal conductivity is calculated with allowance for three-phonon scattering processes, the diffuse scattering by sample boundaries, the scattering by point and extended defects, the specular scattering by crystallite boundaries, and the scattering by intercrystallite contacts. A model that reproduces the main specific features of the thermal conductivity of CVD diamond is proposed. The phonon scattering by intercrystallite contacts plays a key role in this model.  相似文献   

5.
The ultrasonic attenuation in intermetallic praseodymium monochalcogenides are evaluated in the temperature interval 100–500 K along the crystallographic directions 〈100〉, 〈110〉, and 〈111〉 for longitudinal and shear waves. A comparison has been made with lanthanum monochalcogenides and other similar materials. Ultrasonic attenuation at different temperatures is mainly affected by the lattice thermal conductivity values of the materials at these temperatures. Thermoelastic loss is very small in comparison to the attenuation due to phonon-phonon interaction mechanism at higher temperatures.  相似文献   

6.
The effect of normal phonon-phonon scattering processes on the thermal conductivity of silicon crystals with various degrees of isotope disorder is considered. The redistribution of phonon momentum in normal scattering processes is taken into account within each oscillation branch (the Callaway generalized model), as well as between different oscillation branches of the phonon spectrum (the Herring mechanism). The values of the parameters are obtained that determine the phonon momentum relaxation in anharmonic scattering processes. The contributions of the drift motion of longitudinal and transverse phonons to the thermal conductivity are analyzed. It is shown that the momentum redistribution between longitudinal and transverse phonons in the Herring relaxation model represents an efficient mechanism that limits the maximum thermal conductivity in isotopically pure silicon crystals. The dependence of the maximum thermal conductivity on the degree of isotope disorder is calculated. The maximum thermal conductivity of isotopically pure silicon crystals is estimated for two variants of phonon momentum relaxation in normal phonon-phonon scattering processes.  相似文献   

7.
In order to investigate the relationship between negative thermal expansion and other thermal properties, the thermal conductivity of the α-phase of ZrW2O8 has been determined from 1.9 to 390 K. In addition, the heat capacity was measured from 1.9 to 300 K. The thermal conductivity of ZrW2O8 is low, glass-like and close to its theoretical minimum value. The phonon-phonon coupling of the highly anharmonic low-frequency modes which are responsible for negative thermal expansion in ZrW2O8 appears to be highly efficient, leading to short phonon mean free paths and exceptionally low thermal conductivity.  相似文献   

8.
A strong dependence of the thermopower of germanium crystals on the isotopic composition is experimentally found. The theory of phonon drag of electrons in semiconductors with nondegenerate statistics of current carriers is developed, which takes into account the special features of the relaxation of phonon momentum in the normal processes of phonon-phonon scattering. The effect of the drift motion of phonons on the drag thermopower in germanium crystals of different isotopic compositions is analyzed for two options of relaxation of phonon momentum in the normal processes of phonon scattering. The phonon relaxation times determined from the data on the thermal conductivity of germanium are used in calculating the thermopower. The importance of the inelasticity of electron-phonon scattering in the drag thermopower in semiconductors is analyzed. A qualitative explanation of the isotope effect in the drag thermopower is provided. It is demonstrated that this effect is associated with the drift motion of phonons, which turns out to be very sensitive to isotopic disorder in germanium crystals.  相似文献   

9.
王拓  陈弘毅  仇鹏飞  史迅  陈立东 《物理学报》2019,68(9):90201-090201
硫化银(Ag_2S)是一种典型的快离子导体材料,前期关于Ag_2S的研究主要集中在光电和生物等领域.最近的研究表明, a-Ag_2S具有和金属一样的良好延展性和变形能力.但是, Ag_2S的热电性能尚无公开报道.本工作合成了单相Ag_2S化合物,系统研究了其在300—600 K范围的物相变化、离子迁移特性和电热输运性质.研究发现, Ag_2S在300—600 K温度区间表现出半导体的电输运性质.由于单斜-体心立方相晶体结构转变, Ag_2S的离子电导率、载流子浓度、迁移率、电导率、泽贝克系数等性质在455 K前后出现急剧变化.在550 K, Ag_2S的功率因子最高可达5μW·cm~(–1)·K~(–2). Ag_2S在300—600 K温度区间均表现出本征的低晶格热导率(低于0.6 W·m~(–1)·K~(–1)). S亚晶格中随机分布的类液态Ag离子是导致b-Ag_2S体心立方相具有低晶格热导率的主要原因.在573 K, Ag_2S的热电优值可达0.55,与Ag_2Se, Ag_2Te, CuAgSe等已报道的Ag基快离子导体热电材料的性能相当.  相似文献   

10.
The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.  相似文献   

11.
Superlattice Umklapp processes contribute to phonon-phonon scattering and limit the thermal conductivity of insulating superlattices. The temperature dependence of the thermal conductivity is predicted using Callaway's phenomenological relaxation time approximation.  相似文献   

12.
13.
The temperature dependences of the thermal conductivity of a synthetic opal and opal-based nano-composites prepared by introducing a LiIO3 superionic conductor into pores of the opal matrix from an aqueous solution or melt are measured by the hot-wire technique in the temperature range 290–420 K. It is demonstrated that the thermal conductivity of pure opal increases with an increase in the diameter of the SiO2 spheres forming a face-centered cubic lattice of an opal and is determined by the total thermal resistance of interfaces between the spheres. Filling of opal pores with the ionic conductor leads to an increase in the thermal conductivity. The behavior of the thermal conductivity and its magnitude in opal-based nanocomposites depend to a large extent on the method of filling the matrix pores.  相似文献   

14.
As far as the electrical conductivity is concerned, solids are usually classified as metals, semiconductors, or insulators. In metals the concentration of the charge carriers responsible for the electrical conductivity is large, whereas in semiconductors and insulators the carrier concentration is much smaller. The distinction between semiconductors and insulators is based on a difference in the nature of the conductivity. For semiconductors the charge carriers (electrons or holes) occupy the states of energy bands; these states are not Iocalized on particular atoms, but spread throughout the entire crystal. In such a situation the mobility of the carriers can be quite high and would, in fact, be infinite in a rigid periodic lattice; in this model the thermal motion of the atoms induces a scattering of the carriers and thus limits the conductivity to finite values. The classical examples of semiconductors are the elements Si and Ge and compounds such as GaAs, InSb, CdTe, ZnS, etc.  相似文献   

15.
The temperature dependences of the thermal conductivity of layered crystals (LCs) of graphite, boron nitride, gallium sulfide, etc., are analyzed. It is shown that the bending branch of vibrations typical of LCs determines the behavior of the thermal conductivity only in the region of its increase. The decrease in thermal conductivity upon heating cannot be explained by taking into account the bending vibrations only, and phonon-phonon interaction processes become effective only in the case of excitation of other branches in the acoustic spectrum.  相似文献   

16.
The temperature dependences of the thermal conductivity are calculated for solid SF6 and Xe. The influence of thermal pressure in a crystal on the isochoric thermal conductivity is investigated. The contributions of the phonon-phonon and phonon-rotation interactions to the total thermal resistance of solid SF6 are calculated using a modified method of reduced coordinates. The temperature dependence of the isochoric thermal conductivity of SF6 is explained by a combined effect of thermal pressure and phonon-rotation interaction.  相似文献   

17.
In this work thermal conduction in one-dimensional(1D) chains of anharmonic oscillators are studied using computer simulation.The temperature profile,heat flux and thermal conductivity are investigated for chain length N = 100,200,400,800 and 1600.In the computer simulation anharmonicity is introduced due to Fermi-Pasta-Ulam-β(FPU-β) model.For substrate interaction,an onsite potential due to Frenkel-Kontorova(FK) model has been used.Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J = 0.1765/N.For the thermal conductivity K,KN to N obey the linear relation of the type KN = 0.8805N.It is shown that thermal transport is dependent on phonon-phonon interaction as well as phonon-lattice interaction.The thermal conductivity increases linearly with increase inanharmonicity and predicts relation κ = 0.133 + 0.804β.It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.  相似文献   

18.
An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field, and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall conductivity sigma s and charge conductivity sigma c are related through sigma s=[2pi variant /(3mc2)]sigma2c with m being the bare electron mass. The theoretically computed value is in agreement with experiment.  相似文献   

19.
王彦成  邱吴劼  杨宏亮  席丽丽  杨炯  张文清 《物理学报》2018,67(1):16301-016301
对于重要热电材料之一的填充方钴矿材料,其低热导率的成因存在两种观点:1)填充原子的局域振动引起共振散射降低热导率;2)填充原子的引入加强了三声子倒逆过程来降低热导率.本文采用含有限温度效应的第一性原理分子动力学方法模拟了YbFe_4Sb_(12)的动力学过程,并通过温度相关有效势场方法得到了充分包含非线性作用的等效非谐力常数,研究了微扰近似下的声子输运性质.结果显示,在填充原子振动全部参与三声子倒逆散射过程的近似下,相比于纯方钴矿体系,声子寿命大幅地降低,填充原子的振动是热阻的重要来源.但即便如此,理论计算结果与实验的晶格热导率之间仍存在明显偏离.不同填充原子振动之间的较弱关联性质也揭示其明显偏离经典的声子图像,表现为一种强烈的局域特征振动模式,并以此散射其他晶格声子,因而对热阻的贡献也超出了传统三声子的理论框架.通过将填充原子Yb振动模式的寿命进行共振散射形式的修正,可以使晶格热导率与实验结果符合较好.以上结果表明,YbFe_4Sb_(12)的低晶格热导率是由声子间相互作用以及具有局域振动特征的共振散射两方面因素导致.  相似文献   

20.
The influence of normal processes of electron-electron and phonon-phonon scattering on quasiparticle momentum relaxation in nonequilibrium electron-phonon systems of degenerate semiconductors is investigated. A system of kinetic equations is solved for the electron and phonon distribution functions, and the kinetic coefficients of a semiconductor are calculated in the linear approximation in the degeneracy parameter. The influence of normal scattering of quasiparticles on the electrical conductivity, thermopower, and heat conductivity of a degenerate semiconductor is analyzed. Redistribution of the phonon momentum in N processes within each branch of the vibrational spectrum, as well as among different branches, is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号