首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A method to form and manipulate the properties of nanometer-size liquid bridges by an external electric field is discussed. The properties of bridges are shown to be the result of an interplay among the field-induced polarization of the water layer adsorbed on the surface, the surface energy, and the water condensation from the humid air. For a given tip-sample separation, a simple model predicts the existence of a threshold voltage V(th) to form the bridge in full agreement with experiments.  相似文献   

3.
Structural transformations in multilayer Ti-Al films (layer thickness from 4 to 500 nm, number of layers up to 4440, total foil thickness ∼18 μm) upon slow heating have been studied by time-resolved synchrotron radiation diffraction. Some specific features of heterogeneous reactions and the sequence of phase formation in multilayer samples during the interaction of interaction between layer components have been determined as functions of the single layer thickness. Original Russian Text ? I.Yu. Yagubova, A.E. Grigoryan, A.S. Rogachev, M.R. Sharafutdinov, B.P. Tolochko, P.A. Tsygankov, A.N. Nosyrev, 2007, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2007, Vol. 71, No. 2, pp. 278–279.  相似文献   

4.
Field-induced successive transitions were observed in magnetoresistance in the quasi-one-dimensional organic conductor, HMTSF-TCNQ, hexamethylene-tetraselena-fulvalene-tetracyanoquinodimethane. The magnetoresistance exhibits kink transitions accompanying hysteresis at pressures around 1 GPa, but neither at p=0 nor at 2 GPa. At p=0 and below 30 K, this material undergoes charge density wave (CDW) state, which is suppressed around 1 GPa, where successive transitions are observed. Since these behavior is only observed at the boundary in pressure between insulator and metal, and the nature of the insulating state is CDW at p=0, it is strongly suggested that the successive transitions observed in magnetoresistance might be associated with CDW, accordingly a field-induced CDW by the one-dimensionalization by strong magnetic field ranging from 10 to 30 T. The behaviors are compared with previously claimed FICDW and the established FISDW (field-induced-spin-density-wave).  相似文献   

5.
We discuss the response of continuous-time random walks to an oscillating external field within the generalized master equation approach. We concentrate on the time dependence of the two first moments of the walker's displacement. We show that for power-law waiting-time distributions with 0相似文献   

6.
The low-temperature magnetization of a film was analyzed by the use of exact Bose representation of spin operators that does not suffer from the presence of unphysical states. The magnetization of thin films has exponentially small temperature correctness, so that Dyson’s proof about exponentially small correction coming from two bosons at ideal lattice point cannot be used in film analyses. The main conclusions of this work are that magnetic lattice of a thin film is more rigid than the macroscopic lattice and that the autoreduction process (the three layer film divides into two layer subfilms) takes place in the film.  相似文献   

7.
We demonstrate, by theoretical analysis and molecular dynamics simulation, a mechanism for fabricating nanotubes by self-bending of nanofilms under intrinsic surface-stress imbalance due to surface reconstruction. A freestanding Si nanofilm may spontaneously bend itself into a nanotube without external stress load, and a bilayer SiGe nanofilm may bend into a nanotube with Ge as the inner layer, opposite of the normal bending configuration defined by misfit strain. Such rolled-up nanotubes can accommodate a high level of strain, even beyond the magnitude of lattice mismatch, greatly modifying the tube electronic and optoelectronic properties.  相似文献   

8.
A numerical analysis is performed in order to determine the magnitude and disposition of field-induced stresses in an axisymmetric field emitter whose profile is taken as a calculated profile of a real tungsten emitter. The results are compared to previous analyses and new observations are made. Conclusions are drawn which reflect the effect of these stresses on crystalline defects in the emitter during the imaging process and during field evaporation.  相似文献   

9.
Initially homogeneous suspensions of colloidal particles often develop patterns during sedimentation. Commonly, the concentration profile of the particles evolves into a “staircase”: layers of nearly constant concentration, separated by sharp boundaries between successive layers, with the concentration of each successive layer increasing with depth. Siano [1] has demonstrated experimentally that uphill diffusion, diffusion against the concentration gradient, occurs during this pattern formation. Thus, these patterns appear to be the result of spinodal decomposition. We find that these staircase patterns cannot be explained by the classical spinodal decomposition theory of Cahn and Hilliard, but that they can be explained if the linear gradient-energy term of Tiller, Pound, and Hirth is added to the free energy. Such a term plays a central role in the faceting of crystals. In the present application we believe that the physical origin of this extra term may be the Rayleigh—Taylor instability.  相似文献   

10.
We report experiments on thermally driven convection in an inclined layer of large aspect ratio in a fluid of Prandtl number sigma approximately 1. We observed a number of new nonlinear, mostly spatiotemporally chaotic, states. At small angles of inclination we found longitudinal rolls, subharmonic oscillations, Busse oscillations, undulation chaos, and crawling rolls. At larger angles, in the vicinity of the transition from buoyancy- to shear-driven instability, we observed drifting transverse rolls, localized bursts, and drifting bimodals. For angles past vertical, when heated from above, we found drifting transverse rolls and switching diamond panes.  相似文献   

11.
A theoretical study of vortex-lattice formation in atomic Bose-Einstein condensates confined by a rotating elliptical trap is presented. For the conventional case of purely s-wave interatomic interactions, this is done through a consideration of both hydrodynamic equations and time-dependent simulations of the Gross-Pitaevskii equation. We discriminate three distinct, experimentally testable regimes of instability: ripple, interbranch, and catastrophic. Additionally, we generalize the classical hydrodynamical approach to include long-range dipolar interactions, showing how the static solutions and their stability in the rotating frame are significantly altered. This enables us to examine the routes towards unstable dynamics, which, in analogy to conventional condensates, may lead to vortex-lattice formation.  相似文献   

12.
We study slow-light performance of molecular aggregates arranged in nanofilms by means of coherent population oscillations. The molecular cooperative behavior inside the aggregate enhances the delay of input signals in the gigahertz range in comparison with other coherent population oscillation-based devices. Moreover, the problem of residual absorption present in coherent population oscillation processes is removed. We also propose an optical switch between different delays by exploiting the optical bistability of these aggregates.  相似文献   

13.
Heterochiral islands, in which topological dipoles are oppositely directed, are observed in freestanding antiferroelectric (SmC A *) films. The topological dipoles in films with a transverse electric polarization and a planar molecule orientation at island boundaries are coplanar with an electric field. The topological dipoles in films with a longitudinal polarization and a planar orientation at island boundaries are perpendicular to an electric field. For a radial director orientation at island boundaries, the topological dipoles in films with a longitudinal polarization are coplanar with a field. Changing the orientation of an electric field, we can control the position of a topological defect at an island boundary and the orientation of a topological dipole. Heterochiral islands can form dimers with an anomalously small interisland distance.  相似文献   

14.
The Kondo lattice model, augmented by a Zeeman term, serves as a useful model of a Kondo insulator in an applied magnetic field. A variational mean field analysis of this system on a square lattice, backed up by quantum Monte Carlo calculations, reveals an interesting separation of magnetic field scales. For Zeeman energy comparable to the Kondo energy, the spin gap closes and the system develops transverse staggered magnetic order. The charge gap, however, remains robust up to a higher hybridization energy scale, at which point the canted antiferromagnetism is exponentially suppressed and the system crosses over to a nearly metallic regime. Quantum Monte Carlo simulations support this mean field scenario. An interesting rearrangement of spectral weight with magnetic field is found.  相似文献   

15.
In microscale and nanoscale ferroelectric samples, the formation and growth of domains are the usual stages of the polarization switching mechanism. By assuming weak polarization anisotropy and by solving the Ginzburg–Landau–Khalatnikov equation we have explored an alternative mechanism which consists in ferroelectric switching induced by vortex formation. We have studied the polarization dynamics inside a ferroelectric circular capacitor where switching leads to the formation of a metastable vortex state with a rotational motion of the polarization. Our results are consistent with recent first-principle simulations [I.I. Naumov, H.X. Fu, Phys. Rev. Lett. 98, 077603 (2007)] and with experiments on PbZr0.2Ti0.8O3 [A. Gruverman, D. Wu, H.J. Fan, I. Vrejoiu, M. Alexe, R.J. Harrison, J.F. Scott, J. Phys. Condens. Matter 20 342201(2008)] and demonstrate that vortex-induced polarization switching can be an effective mechanism for circular nanocapacitors.  相似文献   

16.
17.
18.
19.
We study the formation and growth of wetting layers in the binary liquid mixture cyclohexane-methanol. By progressively deuterating the methanol we can tune the equilibrium wetting layer thickness. Hysteresis of the transition is observed for large thicknesses and is absent for thinner ones. This can be understood by calculating the activation energy for wetting layer nucleation as a function of the film thickness. We also show that the late-stage growth of the wetting layer after the nucleation process follows a power law in time, in agreement with a diffusion-limited growth mechanism proposed theoretically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号