首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism.  相似文献   

2.
Steered molecular dynamics (SMD) permits efficient investigations of molecular processes by focusing on selected degrees of freedom. We explain how one can, in the framework of SMD, employ Jarzynski's equality (also known as the nonequilibrium work relation) to calculate potentials of mean force (PMF). We outline the theory that serves this purpose and connects nonequilibrium processes (such as SMD simulations) with equilibrium properties (such as the PMF). We review the derivation of Jarzynski's equality, generalize it to isobaric--isothermal processes, and discuss its implications in relation to the second law of thermodynamics and computer simulations. In the relevant regime of steering by means of stiff springs, we demonstrate that the work on the system is Gaussian-distributed regardless of the speed of the process simulated. In this case, the cumulant expansion of Jarzynski's equality can be safely terminated at second order. We illustrate the PMF calculation method for an exemplary simulation and demonstrate the Gaussian nature of the resulting work distribution.  相似文献   

3.
We have investigated the maximum computational efficiency of reversible work calculations that change control parameters in a finite amount of time. Because relevant nonequilibrium averages are slow to converge, a bias on the sampling of trajectories can be beneficial. Such a bias, however, can also be employed in conventional methods for computing reversible work, such as thermodynamic integration or umbrella sampling. We present numerical results for a simple one-dimensional model and for a Widom insertion in a soft sphere liquid, indicating that, with an appropriately chosen bias, conventional methods are in fact more efficient. We describe an analogy between nonequilibrium dynamics and mappings between equilibrium ensembles, which suggests that the practical inferiority of fast switching is quite general. Finally, we discuss the relevance of adiabatic invariants in slowly driven Hamiltonian systems for the application of Jarzynski's theorem.  相似文献   

4.
We present a detailed comparison of computational efficiency and precision for several free energy difference (DeltaF) methods. The analysis includes both equilibrium and nonequilibrium approaches, and distinguishes between unidirectional and bidirectional methodologies. We are primarily interested in comparing two recently proposed approaches, adaptive integration, and single-ensemble path sampling to more established methodologies. As test cases, we study relative solvation free energies of large changes to the size or charge of a Lennard-Jones particle in explicit water. The results show that, for the systems used in this study, both adaptive integration and path sampling offer unique advantages over the more traditional approaches. Specifically, adaptive integration is found to provide very precise long-simulation DeltaF estimates as compared to other methods used in this report, while also offering rapid estimation of DeltaF. The results demonstrate that the adaptive integration approach is the best overall method for the systems studied here. The single-ensemble path sampling approach is found to be superior to ordinary Jarzynski averaging for the unidirectional, "fast-growth" nonequilibrium case. Closer examination of the path sampling approach on a two-dimensional system suggests it may be the overall method of choice when conformational sampling barriers are high. However, it appears that the free energy landscapes for the systems used in this study have rather modest configurational sampling barriers.  相似文献   

5.
Potential of mean force (PMF) calculations provide a reliable method for determination of the absolute binding free energies for protein-ligand systems. The common method used for this purpose -- umbrella sampling with weighted histogram analysis -- is computationally very laborious, which limits its applications. Recently, a much simpler alternative for PMF calculations has become available, namely, using Jarzynski's equality in steered molecular dynamics simulations. So far, there have been a few comparisons of the two methods and mostly in simple systems that do not reflect the complexities of protein-ligand systems. Here, we use both methods to calculate the PMF for ion permeation and ligand binding to ion channels. Comparison of results indicate that Jarzynski's method suffers from relaxation problems in complex systems and would require much longer simulation times to yield reliable PMFs for protein-ligand systems.  相似文献   

6.
Recent work has demonstrated the Bennett acceptance ratio method is the best asymptotically unbiased method for determining the equilibrium free energy between two end states given work distributions collected from either equilibrium and nonequilibrium data. However, it is still not clear what the practical advantage of this acceptance ratio method is over other common methods in atomistic simulations. In this study, we first review theoretical estimates of the bias and variance of exponential averaging (EXP), thermodynamic integration (TI), and the Bennett acceptance ratio (BAR). In the process, we present a new simple scheme for computing the variance and bias of many estimators, and demonstrate the connections between BAR and the weighted histogram analysis method. Next, a series of analytically solvable toy problems is examined to shed more light on the relative performance in terms of the bias and efficiency of these three methods. Interestingly, it is impossible to conclusively identify a "best" method for calculating the free energy, as each of the three methods performs more efficiently than the others in at least one situation examined in these toy problems. Finally, sample problems of the insertion/deletion of both a Lennard-Jones particle and a much larger molecule in TIP3P water are examined by these three methods. In all tests of atomistic systems, free energies obtained with BAR have significantly lower bias and smaller variance than when using EXP or TI, especially when the overlap in phase space between end states is small. For example, BAR can extract as much information from multiple fast, far-from-equilibrium simulations as from fewer simulations near equilibrium, which EXP cannot. Although TI and sometimes even EXP can be somewhat more efficient in idealized toy problems, in the realistic atomistic situations tested in this paper, BAR is significantly more efficient than all other methods.  相似文献   

7.
Jarzynski's relation and the fluctuation theorem have established important connections between nonequilibrium statistical mechanics and equilibrium thermodynamics. In particular, an exact relationship between the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change the equilibrium ensemble. We show that a generalized expression is advantageous for computer simulations of free energy differences. Several methods based on this idea are proposed. The accuracy and efficiency of the proposed methods are evaluated with a model problem.  相似文献   

8.
We consider the sampling problems encountered in computing free-energy differences using Jarzynski's nonequilibrium work relation [Phys. Rev. Lett. 56, 2690 (1997)]. This relation expresses the free-energy change of a system, on which finite-time work is done, as an average over all possible trajectories of the system. This average can then be expressed as a cumulant expansion of the work. We study the scaling of these cumulants with an appropriately defined measure of phase-space accessibility epsilon and particle number N for two simple changes in state. We find that the cumulant expansion is slowly convergent for predominantly entropic processes, those where epsilon is considerably altered during the course of the process. An accurate determination of the free-energy change requires some knowledge of the behavior of the tails of the work distribution associated with the process. Jarzynski's irreversible work relation is only valid with the correct ordering of the infinite limits of N and epsilon, clarifying the regime of its applicability.  相似文献   

9.
For systems in an externally controllable time-dependent potential, the optimal protocol minimizes the mean work spent in a finite-time transition between two given equilibrium states. For overdamped dynamics which ignores inertia effects, the optimal protocol has been found to involve jumps of the control parameter at the beginning and end of the process. Including the inertia term, we show that this feature not only persists but that even delta-peak-like changes of the control parameter at both boundaries make the process optimal. These results are obtained by analyzing two simple paradigmatic cases: First, a Brownian particle dragged by a harmonic optical trap through a viscous fluid and, second, a Brownian particle subject to an optical trap with time-dependent stiffness. These insights could be used to improve free energy calculations via either thermodynamic integration or "fast growth" methods using Jarzynski's equality.  相似文献   

10.
11.
Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study.  相似文献   

12.
We describe a strategy to improve the efficiency of free energy estimates by reducing dissipation in nonequilibrium Monte Carlo simulations. This strategy generalizes the targeted free energy perturbation approach [C. Jarzynski, Phys. Rev. E 65, 046122 (2002)] to nonequilibrium switching simulations, and involves generating artificial, "escorted" trajectories by coupling the evolution of the system to updates in external work parameter. Our central results are: (1) a generalized fluctuation theorem for the escorted trajectories, and (2) estimators for the free energy difference ΔF in terms of these trajectories. We illustrate the method and its effectiveness on model systems.  相似文献   

13.
We present methods that introduce concepts from Rosenbluth sampling [M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 23, 356 (1955)] into the Jarzynski nonequilibrium work (NEW) free-energy calculation technique [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)]. The proposed hybrid modifies the way steps are taken in the NEW process. With it, each step is selected from a range of alternatives, with bias given to steps that contribute the least work. The definition of the work average is modified to account for the bias. We introduce two variants of this method, lambda-bias sampling and configuration-bias sampling, respectively; a combined lambda- and configuration-bias method is also considered. By reducing the likelihood that large nonequilibrated work values enter the ensemble average, the Rosenbluth sampling aids in remedying problems of inaccuracy of the calculation. We demonstrate the performance of the proposed methods through a model system of N independent harmonic oscillators. This model captures the difficulties involved in calculating free energies in real systems while retaining many tractable features that are helpful to the study. We examine four variants of this model that differ qualitatively in the nature of their phase-space overlap. Results indicate that the lambda-bias sampling method is most useful for systems with entropic sampling barriers, while the configuration-bias methods are best for systems with energetic sampling barriers. The Rosenbluth-sampling schemes yield much more accurate results than the unbiased nonequilibrium work method. Typically the accuracy can be improved by about an order of magnitude for a given amount of sampling; this improvement translates into two or more orders of magnitude less sampling required to obtain a given level of accuracy, owing to the generally slow convergence of the NEW calculation when the inaccuracy is large.  相似文献   

14.
Recently discovered identities in statistical mechanics have enabled the calculation of equilibrium ensemble averages from realizations of driven nonequilibrium processes, including single-molecule pulling experiments and analogous computer simulations. Challenges in collecting large data sets motivate the pursuit of efficient statistical estimators that maximize use of available information. Along these lines, Hummer and Szabo developed an estimator that combines data from multiple time slices along a driven nonequilibrium process to compute the potential of mean force. Here, we generalize their approach, pooling information from multiple time slices to estimate arbitrary equilibrium expectations. Our expression may be combined with estimators of path-ensemble averages, including existing optimal estimators that use data collected by unidirectional and bidirectional protocols. We demonstrate the estimator by calculating free energies, moments of the polymer extension, the thermodynamic metric tensor, and the thermodynamic length in a model single-molecule pulling experiment. Compared to estimators that only use individual time slices, our multiple time-slice estimators yield substantially smoother estimates and achieve lower variance for higher-order moments.  相似文献   

15.
For the classical diffusion of independent particles, Fick's law gives a well-known relationship between the average flux and the average concentration gradient. What has not yet been explored experimentally, however, is the dynamical distribution of diffusion rates in the limit of small particle numbers. Here, we measure the distribution of diffusional fluxes using a microfluidics device filled with a colloidal suspension of a small number of microspheres. Our experiments show that (1) the flux distribution is accurately described by a Gaussian function; (2) Fick's law, that the average flux is proportional to the particle gradient, holds even for particle gradients down to a single particle difference; (3) the variance in the flux is proportional to the sum of the particle numbers; and (4) there are backward flows, where particles flow up a concentration gradient, rather than down it. In addition, in recent years, two key theorems about nonequilibrium systems have been introduced: Evans' fluctuation theorem for the distribution of entropies and Jarzynski's work theorem. Here, we introduce a new fluctuation theorem, for the fluxes, and we find that it is confirmed quantitatively by our experiments.  相似文献   

16.
We introduce a straightforward, single-ensemble, path sampling approach to calculate free energy differences based on Jarzynski's relation. For a two-dimensional "toy" test system, the new (minimally optimized) method performs roughly one hundred times faster than either optimized "traditional" Jarzynski calculations or conventional thermodynamic integration. The simplicity of the underlying formalism suggests the approach will find broad applicability in molecular systems.  相似文献   

17.
The potential of mean force (PMF) for stretching decaalanine in vacuum was determined earlier by Park and Schulten [J. Chem. Phys. 120, 5946 (2004)] in a landmark article demonstrating the efficacy of combining steered molecular dynamics and Jarzynski's nonequilibrium relation. In this study, the recently developed adaptive steered molecular dynamics (ASMD) algorithm [G. Ozer, E. Valeev, S. Quirk, and R. Hernandez, J. Chem. Theory Comput. 6, 3026 (2010)] is used to reproduce the PMF of the unraveling of decaalanine in vacuum by averaging over fewer nonequilibrium trajectories. The efficiency and accuracy of the method are demonstrated through the agreement with the earlier work by Park and Schulten, a series of convergence checks compared to alternate SMD pulling strategies, and an analytical proof. The nonequilibrium trajectories obtained through ASMD have also been used to analyze the intrapeptide hydrogen bonds along the stretching coordinate. As the decaalanine helix is stretched, the initially stabilized i → i + 4 contacts (α-helix) is replaced by i → i + 3 contacts (3(10)-helix). No significant formation of i → i + 5 hydrogen bonds (π-helix) is observed.  相似文献   

18.
We derive expressions for the equilibrium entropy and energy changes in the context of the Jarzynski equality relating nonequilibrium work to equilibrium free energy. The derivation is based on a stochastic path integral technique that reweights paths at different temperatures. Stochastic dynamics generated by either a Langevin equation or a Metropolis Monte Carlo scheme are treated. The approach enables the entropy-energy decomposition from trajectories evolving at a single-temperature and does not require simulations or measurements at two or more temperatures. Both finite difference and analytical formulae are derived. Testing is performed on a prototypical model system and the method is compared with existing thermodynamic integration and thermodynamic perturbation approaches for entropy-energy decomposition. The new formulae are also put in the context of more general, dynamics-independent expressions that derive from either a fluctuation theorem or the Feynman-Kac theorem.  相似文献   

19.
Multivariate data sets often contain gaps in the data matrix. Especially with medical data, missing values are not always avoidable. Most techniques of data analysis do not allow for data gaps; a brief overview is given of the methods currently used to cope with this problem. There are two major groups of missing-data handling techniques: preprocessing techniques used before the data anaysis, and techniques integrated into the data analysis. Preprocessing tecniques can involve deletion of incomplete objects or variables, which loses existing values, or replacement of missing data by estimates, which introduces pseudo-information and bias. Integrated methods are not usually satisfactory. To avoid most of these disadvantages, a new preprocessing technique is proposed for deleting missing data. The algorithm comprises a stepwise deletion of both variables and objects, which retains as much of the data as possible. It is demonstrated on several artificially constructed problem data sets and on some real clinical data collections. It is shown to retain considerably more of the original data sets than other deleting procedures.  相似文献   

20.
The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to nonequilibrium measurements of the work. These relations extend to single-molecule experiments that have probed the finite-time thermodynamics of proteins and nucleic acids. The effects of experimental error and instrument noise have not been considered previously. Here, we present a Bayesian formalism for estimating free energy changes from nonequilibrium work measurements that compensates for instrument noise and combines data from multiple driving protocols. We reanalyze a recent set of experiments in which a single RNA hairpin is unfolded and refolded using optical tweezers at three different rates. Interestingly, the fastest and farthest-from-equilibrium measurements contain the least instrumental noise and, therefore, provide a more accurate estimate of the free energies than a few slow, more noisy, near-equilibrium measurements. The methods we propose here will extend the scope of single-molecule experiments; they can be used in the analysis of data from measurements with atomic force microscopy, optical, and magnetic tweezers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号