首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pristine ETS-10 and AM-6 and their Co2+-exchanged forms were prepared, and their catalytic activi-ties toward the oxidation of styrene in oxygen atmosphere were studied in dimethylformamide. The catalysts were denoted as Co-E10-n (n=0, 9, 26, 68, 81) and Co-A6-m (m=0, 8, 23, 63, 79), where n and m denote the degree of Co2+exchange. The products of the oxidation process were identified as styrene epoxide (E) and benzaldehyde (B). Both the pristine forms, ETS-10 (Co-E10-0) and AM-6 (Co-A6-0), and Co2+-exchanged forms displayed catalytic activities. With increasing n or m, the con-version, and hence the rate, increased. Specifically, the rates varied from 6.1 to 12.5 mmol·g?1·h?1 with increasing n (Co-E10-n catalysts) and from 5.4 to 12.4 mmol·g?1·h?1 with increasing m (Co-A6-m catalysts). In contrast, the E/B ratio decreased with increasing n or m. More specifically, the E/B ratio decreased from 2.1 to 0.1 with increasing n from 0 to 81 (Co-E10-n catalysts) and from 1.3 to 0.1 with increasing m from 0 to 79 (Co-A6-m catalysts). Co-E10-9 displayed the highest E yield and Co-A6-79 generated the highest B yield. The highest turnover frequency obtained was 36.3 Co?1·h?1, which was the highest one obtained among those obtained for the Co2+-exchanged zeolites and mesoporous silica reference materials studied in this work.  相似文献   

2.
A series of Co/Mg–Al oxide samples,CoMgAl-x(x=(Mg+Co)/Al molar ratio of 1–5),were prepared by the self-combustion method followed by H2reduction.The catalytic performance and stability of the samples were studied in dry reforming of CH4.XRD and H2-TPR characterization results showed that the reduced CoMgAl-x samples mainly consisted of solid solution and spinel phases with cobalt particles.The spinel phases contained Co3O4 and Con Mg1-n Al2O4(0≦n≦1)varying with the(Mg+Co)/Al ratio.The effect of (Mg+Co)/Al molar ratio on the catalytic behavior was investigated in detail and CoMgAl-3 exhibited the highest catalytic activity and stability among the catalysts studied.  相似文献   

3.
The Fe-Co/SiO2 bimetallic catalysts with different ratios of Fe to Co were prepared by aqueous incipient wetness impregnation. The catalysts of 10%Fe:0%Co/SiO2, 10%Fe:6%Co/SiO2, 10%Fe:2%Co/SiO2, 10%Fe:10%Co/SiO2, 6%Fe:10%Co/SiO2, 2%Fe:10%Co/SiO2 and 0%Fe: 10%Co/SiO2 by mass were tested in a fixed reactor by the Fischer-Tropsch synthesis. Activity and hydrocarbon distribution were found to be determined by the ratio of iron to cobalt of the catalysts. Higher iron content inhibited the activity, whereas higher cobalt content enhanced the activity of the Fe:Co/SiO2 catalysts. On the other hand, for the catalysts of 10%Fe:6%Co/SiO2, 10%Fe:10%Co/SiO2, 6%Fe:10%Co/SiO2, and 2%Fe:10%Co/SiO2, the total C2–C4 fraction increased (from 10.65% to 26.78%) and C5+ fraction decreased (from 75.75% to 57.63%) at 523 K. Temperature programmed reduction revealed that the addition of cobalt enhanced the reducibility of the Fe:Co/SiO2 catalyst. Metal oxides were present in those catalysts as shown by XRD. The Fe-Co alloy phase was found in the 2%Fe:10%Co/SiO2, 6%Fe:10%Co/SiO2, 10%Fe:10%Co/SiO2, 10%Fe:6%Co/SiO2 catalysts and their crystals were perfect.  相似文献   

4.
《天然气化学杂志》2014,(6):795-800
Catalytic performances of the CO2 reforming of toluene on Co/MgO catalysts with different cobalt loadings were evaluated in a fluidized-bed reactor. The results showed that the conversion of toluene and the stability of Co/MgO increased, but the apparent reaction rate decreased at the initial stage with increasing the amount of metallic Co formed from the reduction of Co/MgO catalysts at 700 ~C. The deactivation of Co/MgO catalysts was mainly resulted from that a part of the metallic Co was oxidized by CO2 and could not be re-reduced by H2 at reaction temperature. Therefore, the excess metallic Co on the higher Co loading catalysts was beneficial to the catalyst stability.  相似文献   

5.
Catalytic performances of the CO2 reforming of toluene on Co/Mg O catalysts with different cobalt loadings were evaluated in a fluidized-bed reactor. The results showed that the conversion of toluene and the stability of Co/Mg O increased, but the apparent reaction rate decreased at the initial stage with increasing the amount of metallic Co formed from the reduction of Co/Mg O catalysts at 700°C. The deactivation of Co/Mg O catalysts was mainly resulted from that a part of the metallic Co was oxidized by CO2 and could not be re-reduced by H2 at reaction temperature. Therefore, the excess metallic Co on the higher Co loading catalysts was beneficial to the catalyst stability.  相似文献   

6.
Catalytic performances of the CO2 reforming of toluene on Co/Mg O catalysts with different cobalt loadings were evaluated in a fluidized-bed reactor. The results showed that the conversion of toluene and the stability of Co/Mg O increased, but the apparent reaction rate decreased at the initial stage with increasing the amount of metallic Co formed from the reduction of Co/Mg O catalysts at 700°C. The deactivation of Co/Mg O catalysts was mainly resulted from that a part of the metallic Co was oxidized by CO2 and could not be re-reduced by H2 at reaction temperature. Therefore, the excess metallic Co on the higher Co loading catalysts was beneficial to the catalyst stability.  相似文献   

7.
The effect of Co particle size on the Fischer-Tropsch synthesis (FTS) activity of carbon nanotube (CNT)-supported Co catalysts was investigated. Microemulsion (using water-to-surfactant molar ratios of 2 to12) and impregnation techniques were used to prepare catalysts with different Co particle sizes. Kinetic studies were performed to understand the effect of Co particle size on catalytic activity. Size-dependent kinetic parameters were developed using a thermodynamic method, to evaluate the structural sensitivity of the CNT-supported Co catalysts. The size-independent FTS reaction rate constant and size-independent adsorption parameter increased with increasing reac-tion temperature. The Polani parameter also depended on catalyst particle size, because of changes in the catalyst surface coverage.  相似文献   

8.
Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporous silica(OMS) composites for higher alcohol synthesis(HAS).The carbon layers were derived from different sources and uniformly coated on the porous surface of OMS.Combined with the characterization results of carbonized catalysts,it is demonstrated that the carbon layer-coated supports significantly enhanced the metal dispersion and increased the ratio of Co2+ to Co0 sites,which further increased the CO conversion and alcohols selectivity.Moreover,it is found that the catalytic activity changed in line with the amount of defects and surface oxygenic groups of carbon layers,which re sulted from the different carbon sources.The highest space time yield of C2+OH was 27.5 mmol gcat-1h-1)obtained by the catalyst coated with glucose-derived carbon layer.But the carbon source is not the key factor influencing the distribution of Co-Co2+ dual sites and shows little effect on selectivity in HAS.These results may guide for further design of carbon supported catalysts.  相似文献   

9.
Ni/Mg/Al layered double hydroxides(LDHs) with different n(Ni) : n(Mg) : n(Al) ratio values were prepared via a coprecipitation reaction. Then Ni/Mg/Al mixed oxides were obtained by calcination of these LDHs precursors. Carbon nanotubes were produced in the catalytic decomposition of propane over the Ni/Mg/Al mixed oxide catalysts. The quality of as-made nanotubes was investigated by SEM and TEM. The nanotubes were multiwall with a high length-diameter ratio and appeared to be flexible. The catalytic activities of these mixed oxides increased with increasing the Ni content. The Ni/Mg/Al mixed oxide with the highest Ni content [ n( Ni)/n( Mg)/n(Al) = 1/1/1 ] showed the highest activity and the carbon nanotubes grown on its surface had the best quality.  相似文献   

10.
In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.  相似文献   

11.
Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method.  相似文献   

12.
This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore sizes of 5,11,and 17 nm were used as the supports.The catalysts were prepared by selectively impregnating cobalt nanoparticles either inside or outside CNT.The TPR results indicated that the catalyst with Co particles inside CNT was easier to be reduced than those outside CNT,and the reducibility of cobalt oxide particles inside the CNT decreased with the cobalt oxide particle size increasing.The activity of the catalyst with Co inside CNT was higher than that of catalysts with Co particles outside CNT.Smaller CNT pore size also appears to enhance the catalyst reduction and FTS activity due to the little interaction between cobalt oxide with carbon and the enhanced electron shift on the non-planar carbon tube surface.  相似文献   

13.
For the rational design of metal catalyst in olefin polymerization catalysis, various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center, among which the "sandwich" type turned out to be an efficient category in achieving high molecular weight polyolefin. In the α-diimine system, the "sandwich" type catalysts were built using the typical 8-aryl-naphthyl framework. In this contribution, by introducing the rotationally restrained benzosuberyl substituent into the ortho-position of N-aryl rings, a new class of "sandwich-like" α-diimine nickel catalysts was constructed and fully identified. The rotationally restrained benzosuberyl substituents played a "sandwich-like" function by capping the nickel center from two axial sites. Compared to the nickel catalyst Ni1 bearing freely rotated benzhydryl substituent, Ni2 featuring benzosuberyl substituent enabled the increase(8 times) of polymer molecular weights from 8 kDa to 65 kDa in the polymerization of ethylene. By further increasing the steric bulk of another ortho-site of the N-aryl ring, the polymer molecular weight even reached an ultrahigh level of 833 kDa(M_w=1857 kDa) using the optimized Ni3. Notably, these nickel catalysts could also mediate the copolymerization of ethylene with methyl 10-undecenoate, with Ni3 giving the highest copolymer molecular weight(88 kDa) and the highest incorporation of comonmer(2.0 mol%), along with high activity of up to 10~5 g·mol~(-1)·h~(-1).  相似文献   

14.
TPR technique has been used, to investigate the reducibilities of three types of nickel oxide catalysts calcined in air between 650℃and 1050℃: NiO/Al2O3, NiO/MgAl2O4and NiO/(CaO, MgO) · A12O3· xSiO2. The results indicate that the TPR peaks of all the catalysts were shifted toward high temperature and peak areas were gradually reduced with increasing calcination temperature. Particularly, the main TPR peaks almost disappeared at 1050℃-It was also observed that NiO/(CaO, MgO)· Al2O3 · xSiO2 catalyst was the easiest to be reduced of these catalysts, and there was a small shoulder peak before the main peak for each catalyst. Examination of these catalysts by XPS showed that there were two forms of nickel oxides on support surface .  相似文献   

15.
The non-oxidative aromatization of mixed CH4 with C3H8 over La-promoted Zn/HZSM-5 catalysts was studied in a fixed-bed reactor at 823 K with space velocity 600 h-1 and CH4/C3H8 (mol ratio)=5:1. The propane conversion and the aromatic selectivities were up to 99% and 60% over the catalyst respectively, while methane conversion had an induction period with the highest conversion of 30%. The structure and surface acidity of the catalysts were characterized by XRD, NH3-TPD and TG-DTA. The influences of reaction and regenerative conditions on the activity and selectivity were also investigated.  相似文献   

16.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

17.
There is abundant supply of light alkanes and relatively few routes of converting them to more valuable products. Although CH4 predominates in natural gas, it also contains C2H6, C3H8 and C4H10 (from 5 % to 30% ), and with C2H6 as the most abundant secondary component[1]. Partial oxidation of methane to syngas (CH4 +0.5O2 →CO + 2H2) over nickel-based catalysts has received intensive attention[2]and much research has been devoted to conversion of ethane to ethylene[3]. Ethylene has been shown to be formed from ethane by thermal dehydrogenation (C2H6 →C2H4 + H2) and oxidative dehydrogenation (C2H6 + 0. 5O2 →C2H4 + H2O). These processes are operated under severely fuel-rich conditions. The carbon-deposition and consequent deactivation of the catalysts are major problems, which leads to poor conversion of the above mentioned reactions. As an alternative strategy for the elaboration of ethane, little work on the partial oxidation of ethane (POE) to syngas over nickel-based catalysts has been reported. Provided it could be produced from C2H6with high selectivity and high conversion over nickel-based catalysts, syngas could be directly obtained from natural gas including CH4 and C2H6 with high selectivity and conversion. This may lead to better utilization of the light fractions from natural gas and refineries. In the present paper, POE to syngas over nickel-based catalysts was investigated.  相似文献   

18.
CO2 methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were synthesized by impregnation,calcination and reduction and characterized by elemental analysis,X-ray powder diffraction,H2 temperature-programmed reduction,CO pulse chemisorption and transmission electron microscopy.The Ni/NCNT catalysts were highly active in CO2 methanation at atmospheric pressure,reaching over 50% CO2 conversion and over 95% CH4 selectivity at 340℃ and a GHSV of50,000 mL g-1 h-1 under kinetically controlled conditions.The small Ni particle sizes below 10 nm despite the high Ni loading is ascribed to the efficient anchoring on the N-doped CNTs.The optimum loading of 30 wt%-40 wt% Ni was found to result in the highest Ni surface area,the highest degree of conversion and the highest selectivity to methane.A constant TOF of 0.3 s-1 was obtained indicating similar catalytic properties of the Ni nanoparticles in the range from 10 wt%to 50 wt% Ni loading.Long-term experiments showed that the Ni/NCNT catalyst with 30 wt% Ni was highly stable for 100 h time on stream.  相似文献   

19.
The bimetallic Ru-M (M=Co,Fe,Ni,Mo, Rh,Cr, Mn) catalysts were prepared from SiO_2-supported bimetallic carbonyl clusters, and it was found that the Ru-Co, Ru-Fe and Ru-Mo bimetallic carbonyl cluster-derived catalysts showed higher activity and selectivity for oxygenates such as C_1-C_5 alcohols in CO hydrogenation,in contrast to catalysts prepared from SiO_2-supported homometallic Ru and Co carbonyl clusters. In situ FT-IR studies revealed that the bands at 1584 and 1555 cm~(-1) species were intermediates to produce methanol and higher oxygenates,and at higher temperatures the 1584 cm~(-1) species could react with alkyl to form 1555 cm~(-1) species. By the surface chemical reaction and the IR study of isotopic molecules,it was suggested that 1584 and 1555 cm~(-1) were assigned to surface formyl and acetyl species.  相似文献   

20.
Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion sourceof the mass spectrometer have been studied.The corresponding adductions[C60Si(CH_3)_mCl3_(-m)]~+(m=1,2,3),[C60SiCl]~+ and[C60CH_3]~+ wereobserved and their possible structures were discussed.The resultsindicated that C60 is very reactive to electrophiles in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号