首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
甘油、丙二醇和乙二醇是非常重要的化工原料和合成聚酯类、聚醚类树脂的单体,也可作为功能化合物直接应用于化妆品、食品及制冷等领域.随着生物炼制行业的发展,其作为生物基平台化合物在未来可以获得更为广泛的应用.从富含氧原子的纤维素出发制备甘油和二元醇,符合绿色化学化工的原子经济性、工艺经济性和生产过程清洁等原则,也是生物质资源化利用的重要途径.因此,近年来以纤维素及其衍生物糖和糖醇为原料,通过氢解反应制备甘油和二元醇的研究在国外已广泛开展.在目前已报道的氢解糖和糖醇研究中,几乎均采用包含金属催化剂和液体碱助剂的耦合催化体系,所用液体碱为NaOH, KOH和Ca(OH)2等,使用量很大.这些碱性助剂可以提高金属催化剂对糖醇加氢和氢解反应的催化活性,促进底物转化,但同时也不可避免地加剧了二醇产物进一步氢解和自身缩合反应,使产物选择性降低.在产物分离和提纯过程中,过高的碱浓度也会诱导甘油和二醇产品自身缩合,使分离困难,提高了分离成本.反应液的强碱性还增加了生产过程的设备成本.本文以固体碱MgO为载体,分别负载Ni, Co和Cu等金属制备出Ni-MgO, Co-MgO和Cu-MgO等双功能催化剂,应用于糖醇氢解反应,从而减少或避免使用液体碱添加剂.木质纤维素降解得到的单糖中含量最大的是六碳糖,本文以六碳糖加氢衍生物山梨醇为模型底物,考察了所制MgO负载金属双功能催化剂催化糖醇氢解制甘油和二元醇的活性和选择性,研究了反应条件对山梨醇氢解生成二醇和甘油的影响. 山梨醇氢解反应在不锈钢反应釜中进行.采用气相色谱-质谱联用对氢解产物进行定性分析,采用气相色谱和离子色谱分别对反应中低沸点和高沸点产物进行定量分析.结果表明,在Ni-MgO, Co-MgO和Cu-MgO (其中活性金属和载体MgO的比例为1:3)三种催化剂上山梨醇均能高效转化为乙二醇、1,2-丙二醇和甘油;无论是否添加Ca(OH)2,山梨醇氢解活性顺序均为Ni-MgO>Co-MgO>Cu-MgO.三种催化剂上产物选择性有较大差异, Ni-MgO和Co-MgO对乙二醇和1,2-丙二醇具有较好的选择性,其中1,2-丙二醇与乙二醇比例约为2,而Cu-MgO催化剂对1,2-丙二醇选择性较高,1,2-丙二醇与乙二醇比例约为7.同时,考察了反应温度、压力和反应时间对三种催化剂上山梨醇转化活性和产物选择性的影响.随着温度升高,所有催化剂活性均显著增加,其中Ni-MgO和Cu-MgO催化山梨醇氢解对反应条件较为敏感,而Cu-MgO催化剂对反应条件不敏感.在Ni-MgO催化剂上,可以在较低的反应温度下获得较高的产物选择性.  相似文献   

2.
牛磊  魏瑞平  杨慧  李想  姜枫  肖国民 《催化学报》2013,34(12):2230-2235
以USY为载体制备了一系列不同Cu和MgO负载量的酸碱双功能催化剂Cu-MgO/USY用于甘油氢解制丙二醇反应,并采用X射线粉末衍射、透射电镜、傅里叶红外光谱、NH3程序升温脱附等手段对该催化剂进行了表征.结果表明,负载后的USY载体其Y沸石特征峰保持完整,且MgO的加入提高了Cu在载体表面的分散度.在200 oC,3.5 MPa H2下反应10 h以及6%催化剂0.2Cu-MgO/USY(0.2 g Cu与1.0 g MgO负载于1.0 g USY上面)用量的条件下,甘油转化率达到83.6%,1,2-丙二醇及1,3-丙二醇的选择性分别为40%和19.4%.  相似文献   

3.
以不同官能化碳纳米管(原始MCN、氨基化AMCN和石墨化GMCN等)作为载体,通过浸渍法制备了Ru/CNTs催化剂,并应用于山梨醇氢解制1,2-丙二醇和乙二醇反应中。利用XRD、HRTEM、XPS和ICP-AES等方法对催化剂进行了表征,考察了官能团性质、碱助剂等因素对山梨醇氢解性能的影响。结果表明,与Ru/MCN或Ru/GMCN相比较,Ru/AMCN催化剂对山梨醇氢解有更高的活性,在205℃、5.0 MPa氢压条件下,以Ca(OH)2为添加剂,山梨醇的转化率可达99.5%,1,2-丙二醇(1,2-PD)和乙二醇(EG)的总产率为47.7%。催化剂重复利用五次,催化活性无明显下降。  相似文献   

4.
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)2,CaO和Ba(OH)2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)2和La(OH)3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)2和La(OH)3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)2用量增加而增加;当OH-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)3为添加剂时,即使La(OH)3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)3用量,对乳酸的选择性影响不大;当OH-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)2相比,La(OH)3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)3可高效促进山梨醇加氢转化.为了探索Ca(OH)2或La(OH)3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)2为添加剂时,乳酸选择性是以La(OH)3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)2为添加剂时,加氢反应和重排反应均可发生.而以La(OH)3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.  相似文献   

5.
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)_2,CaO和Ba(OH)_2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)_2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)_3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)_2和La(OH)_3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)_2和La(OH)_3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)_2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)_2用量增加而增加;当OH~-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)_3为添加剂时,即使La(OH)_3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)_3用量,对乳酸的选择性影响不大;当OH~-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)_2相比,La(OH)_3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)_3可高效促进山梨醇加氢转化.为了探索Ca(OH)_2或La(OH)_3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)_2为添加剂时,乳酸选择性是以La(OH)_3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)_2为添加剂时,加氢反应和重排反应均可发生,而以La(OH)_3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.  相似文献   

6.
对近年来催化转化多羟基化合物制备5-羟甲基糠醛、乙二醇、1,2-丙二醇、1,3-丙二醇等高附加值化学品进行了综述. 分析了果糖、葡萄糖、纤维素等不同结构的碳水化合物制5-羟甲基糠醛存在的挑战, 并对相应的解决方法进行了总结. 对于5-羟甲基糠醛的转化, 我们重点讨论了5-羟甲基糠醛选择性氧化制备2,5-二甲酰基呋喃和2,5-呋喃二甲酸以及它们作为聚合单体的潜在应用. 概述了催化氢解纤维素、糖醇、甘油等多羟基化合物制备乙二醇、1,2-丙二醇、1,3-丙二醇等二元醇的方法, 并对可能的机理进行了讨论. 依据近年来多羟基化合物催化选择性转化制备高附加值化学品的研究现状, 对今后的研究热点进行了展望.  相似文献   

7.
碱促进剂在Ru/CNFs催化山梨醇氢解制备二元醇中的作用   总被引:1,自引:0,他引:1  
研究了NaOH,KOH,Mg(OH)2,Ba(OH)2和CaO等5碱促进剂在Ru/CNFs催化山梨醇氢解过程中的作用机制.结果表明,这些碱均能显著提高山梨醇的转化率,但生成二元醇的选择性随碱种类而有所差异,其中以CaO促进的催化剂二元醇选择性最高.CaO提供了用以催化C—C键断裂的OH-,同时与中间产物形成络合物从而影响反应历程.提出了CaO作为促进剂时山梨醇氢解生成二元醇的反应历程,并由此进一步优化了山梨醇浓度、Ru催化剂用量和碱促进剂用量之间的匹配以达到更高的二元醇产率.  相似文献   

8.
黄金花  陈吉祥 《催化学报》2012,33(5):790-796
采用浸渍法及程序升温还原法制备了Ni2P/SiO2和Ni/SiO2催化剂,利用N2吸附-脱附、X射线衍射、X射线荧光、CO化学吸附、氢气程序升温脱附及氨气程序升温脱附等手段对催化剂进行了表征并用于甘油氢解反应.结果表明,Ni2P/SiO2和Ni/SiO2具有相近的表面Ni密度,但前者表面酸中心和表面氢物种(包括吸附氢和溢流氢)密度明显更高,且在甘油氢解反应中的活性也更高,这与其酸性中心与金属中心之间的协同作用有关.Ni2P/SiO2催化剂上主要产物为1,2-丙二醇及1-丙醇,而Ni/SiO2催化剂上主要产物为1,2-丙二醇、乙二醇和乙醇.提高反应温度和H2压力不能促进Ni2P/SiO2上乙醇和乙二醇的生成,但促进了1,2-丙二醇进一步氢解转化为1-丙醇.由此可见,Ni2P/SiO2具有较强的C-O键断裂活性及较弱的C-C键断裂活性,这可能分别与其较多酸性中心和电子及几何结构性质密切相关.  相似文献   

9.
为提高纤维素催化氢解产醇类产物中1,2-丙二醇(1,2-PG)的收率,采用等体积浸渍法制备了以β分子筛为载体负载Ni和W的催化剂。结果表明,当7Ni-20W/β分子筛作为催化剂时,在240℃反应温度和6.0 MPa H_2的条件下反应30 min后,纤维素实现完全转化,1,2-PG和乙二醇(EG)产率分别达到19.3%和45.3%;不同于其他载体催化剂,β分子筛可以明显提高1,2-PG选择性。当不同碱催化剂加入到Ni-W/β分子筛催化剂反应体系后,可以进一步提高1,2-PG的选择性。尤其是当加入Ba(OH)_2后,1,2-丙二醇产率从19.3%提高了32.5%。为了探究碱催化剂在反应中的作用,以葡萄糖为底物进行了一系列的碱催化反应。结果表明,碱催化剂主要作用是有助于将葡萄糖异构化为果糖,从而促进纤维素转化为1,2-PG。催化剂在两次回收重复利用之后1,2-PG的收率只下降3.9%,乙二醇产率收率下降4.1%。  相似文献   

10.
采用浸渍法及程序升温还原法制备了Ni2P/SiO2和Ni/SiO2催化剂,利用N2吸附-脱附、X射线衍射、X射线荧光、CO化学吸附、氢气程序升温脱附及氨气程序升温脱附等手段对催化剂进行了表征并用于甘油氢解反应.结果表明,Ni2P/SiO2和Ni/SiO2具有相近的表面Ni密度,但前者表面酸中心和表面氢物种(包括吸附氢和溢流氢)密度明显更高,且在甘油氢解反应中的活性也更高,这与其酸性中心与金属中心之间的协同作用有关.Ni2P/SiO2催化剂上主要产物为1,2-丙二醇及1-丙醇,而Ni/SiO2催化剂上主要产物为1,2-丙二醇、乙二醇和乙醇.提高反应温度和H2压力不能促进Ni2P/SiO2上乙醇和乙二醇的生成,但促进了1,2-丙二醇进一步氢解转化为1-丙醇.由此可见,Ni2P/SiO2具有较强的C-O键断裂活性及较弱的C-C键断裂活性,这可能分别与其较多酸性中心和电子及几何结构性质密切相关.  相似文献   

11.
甘油催化氢解的研究与应用   总被引:6,自引:0,他引:6  
冯建  袁茂林  陈华  李贤均 《化学进展》2007,19(5):651-658
近年来由于生物柴油产业的快速发展,甘油作为其生产过程中的副产品大量生成,合理利用这些过剩的甘油将有助于增加整个生物柴油产业的经济效益。本文对近年来利用甘油为原料催化氢解合成二元醇(1,2-丙二醇、1,3-丙二醇和乙二醇)的研究进展进行了综述,介绍了甘油催化氢解的研究背景,着重讨论了甘油催化氢解生成二元醇的反应机理(包括脱水-加氢机理、脱氢-加氢机理和螯合机理)和甘油催化氢解在生产二元醇上的应用,并对甘油催化氢解的发展前景做了展望。  相似文献   

12.
贾玉庆  刘海超 《催化学报》2015,(9):1552-1559
山梨醇和木糖醇等多元醇是可再生生物质转化合成液体燃料和化学品的重要平台分子,其中,可通过选择氢解反应一步制备乙二醇和丙二醇等重要化工原料,有望代替从乙烯和丙烯制备二元醇的传统石油化工工艺.目前文献中多元醇氢解反应主要使用Ru基和Ni基催化剂等,但是不可避免地生成C?C键非选择性断裂的副产物甲烷等.与之相比,非贵金属Cu基催化剂往往具有较优异的选择性,但其活性较低和水热稳定性较差.因此,到目前为止研制具有高活性和选择性、以及良好水热稳定性的Cu基催化剂用于生物质基多元醇氢解反应仍然存在挑战.在本文中,我们采用贵金属修饰的方法提高Cu基催化剂在山梨醇选择氢解反应中的活性和水热稳定性.通过分步浸渍法合成了1%Pd-3%Cu/ZrO2、1%Pt-3%Cu/ZrO2和1%Ru-3%Cu/ZrO2双金属催化剂,并比较了它们在山梨醇氢解反应中的催化性能.在相同的反应条件下,上述催化剂中1%Pd-3%Cu/ZrO2(Cu/Pd =5)具有最优的活性及乙二醇、丙二醇和甘油的总选择性.以固体碱La(OH)3为助剂,1%Pd-3%Cu/ZrO2的山梨醇氢解活性高达20.3 h-1,是单金属1%Pd/ZrO2(8.7 h-1)和3%Cu/ZrO2(6.5 h-1)催化剂活性的2-3倍,也高于含有相同Pd、Cu含量的1%Pd/ZrO2和3%Cu/ZrO2机械混合体系的活性(12.2 h-1).而且, Pd-Cu/ZrO2双金属催化剂对C2-C3低碳多元醇的选择性也明显优于Pd/ZrO2和Cu/ZrO2以及二者的机械混合体系.这些结果说明Pd对Cu/ZrO2的促进作用不仅仅需要Pd与Cu两种金属的共同存在,还需要它们两者之间的相互作用.进一步发现, Pd-Cu/ZrO2双金属催化剂在Cu/Pd比为1.5-10.0的较宽范围内都表现出了较高的反应活性(17.8-20.3 h-1)以及乙二醇、丙二醇和甘油的总选择性(57.3%-62.8%),说明较低含量Pd的存在就能够有效地改善Cu催化剂的催化性能.在493 K和5.0 MPa H2的反应条件下,以1%Pd-3%Cu/ZrO2为催化剂,在山梨醇接近完全转化时,获得了61.7%的乙二醇、丙二醇和甘油的总选择性.同时, Pd的加入还能有效地抑制水热反应条件下Cu粒子的团聚,使得Pd-Cu/ZrO2催化剂在山梨醇氢解反应中具有优良的水热稳定性和循环使用性能.在5次循环实验中1%Pd-3%Cu/ZrO2的活性和选择性基本保持不变; X-射线粉末衍射结果表明,反应后的催化剂上未观察到Cu的特征衍射峰, Cu粒子仍然保持良好的分散状态.而对于没有Pd修饰的单金属3%Cu/ZrO2催化剂,经5次循环使用后山梨醇氢解反应的活性则下降了42%;在循环反应中Cu粒子显著地聚集而长大到~30 nm. CO吸附漫反射红外光谱结果揭示了Cu粒子倾向于在Pd粒子表面沉积,随着Cu/Pd原子比的增大, Cu粒子逐渐稀释并覆盖Pd的表面位点,说明Pd与Cu粒子之间存在紧密的接触.氢气程序升温还原结果表明,可能与氢溢流有关, Pd的加入促进了CuO的还原.然而,不同于Pd/ZrO2和Cu/ZrO2机械混合样品的TPR图谱,其显示PdO和CuO各自的还原峰, Pd-Cu双金属催化剂则只存在一个宽化的还原峰,这说明了Pd-Cu之间结构上的紧密接触使得两种金属之间存在强相互作用,其中可能存在从Pd向Cu的电子转移.综合这些结构和电子效应,可以推测Pd的存在促进了Cu粒子对山梨醇的脱氢能力和不饱和中间体的加氢能力,进而提高了Cu基催化剂在山梨醇氢解反应中的活性及目标产物的选择性.同时Pd-Cu之间的强相互作用和氢溢流效应抑制了Cu粒子在水热反应条件下的聚集,提高了催化剂的稳定性.这些结果和认识有助于指导人们为多元醇氢解和其它生物质基化学品的转化反应设计具有更高效率和水热稳定性的新型Cu基催化剂.  相似文献   

13.
山梨醇和木糖醇等多元醇是可再生生物质转化合成液体燃料和化学品的重要平台分子,其中,可通过选择氢解反应一步制备乙二醇和丙二醇等重要化工原料,有望代替从乙烯和丙烯制备二元醇的传统石油化工工艺.目前文献中多元醇氢解反应主要使用Ru基和Ni基催化剂等,但是不可避免地生成C-C键非选择性断裂的副产物甲烷等.与之相比,非贵金属Cu基催化剂往往具有较优异的选择性,但其活性较低和水热稳定性较差.因此,到目前为止研制具有高活性和选择性、以及良好水热稳定性的Cu基催化剂用于生物质基多元醇氢解反应仍然存在挑战.在本文中,我们采用贵金属修饰的方法提高Cu基催化剂在山梨醇选择氢解反应中的活性和水热稳定性.通过分步浸渍法合成了1%Pd-3%Cu/ZrO2、1%Pt-3%Cu/ZrO2和1%Ru-3%Cu/ZrO2双金属催化剂,并比较了它们在山梨醇氢解反应中的催化性能.在相同的反应条件下,上述催化剂中1%Pd-3%Cu/ZrO2(Cu/Pd=5)具有最优的活性及乙二醇、丙二醇和甘油的总选择性.以固体碱La(OH)3为助剂,1%Pd-3%Cu/ZrO2的山梨醇氢解活性高达20.3 h-1,是单金属1%Pd/ZrO2(8.7 h-1)和3%Cu/ZrO2(6.5 h-1)催化剂活性的2-3倍,也高于含有相同Pd、Cu含量的1%Pd/ZrO2和3%Cu/ZrO2机械混合体系的活性(12.2 h-1).而且,Pd-Cu/ZrO2双金属催化剂对C2-C3低碳多元醇的选择性也明显优于Pd/ZrO2和Cu/ZrO 2以及二者的机械混合体系.这些结果说明Pd对Cu/ZrO2的促进作用不仅仅需要Pd与Cu两种金属的共同存在,还需要它们两者之间的相互作用.进一步发现,Pd-Cu/ZrO2双金属催化剂在Cu/Pd比为1.5-10.0的较宽范围内都表现出了较高的反应活性(17.8-20.3 h-1)以及乙二醇、丙二醇和甘油的总选择性(57.3%-62.8%),说明较低含量Pd的存在就能够有效地改善Cu催化剂的催化性能.在493 K和5.0 MPa H2的反应条件下,以1%Pd-3%Cu/ZrO2为催化剂,在山梨醇接近完全转化时,获得了61.7%的乙二醇、丙二醇和甘油的总选择性.同时,Pd的加入还能有效地抑制水热反应条件下Cu粒子的团聚,使得Pd-Cu/ZrO2催化剂在山梨醇氢解反应中具有优良的水热稳定性和循环使用性能.在5次循环实验中1%Pd-3%Cu/ZrO2的活性和选择性基本保持不变;X-射线粉末衍射结果表明,反应后的催化剂上未观察到Cu的特征衍射峰,Cu粒子仍然保持良好的分散状态.而对于没有Pd修饰的单金属3%Cu/ZrO2催化剂,经5次循环使用后山梨醇氢解反应的活性则下降了42%;在循环反应中Cu粒子显著地聚集而长大到~30 nm.CO吸附漫反射红外光谱结果揭示了Cu粒子倾向于在Pd粒子表面沉积,随着Cu/Pd原子比的增大,Cu粒子逐渐稀释并覆盖Pd的表面位点,说明Pd与Cu粒子之间存在紧密的接触.氢气程序升温还原结果表明,可能与氢溢流有关,Pd的加入促进了CuO的还原.然而,不同于Pd/ZrO2和Cu/ZrO2机械混合样品的TPR图谱,其显示PdO和CuO各自的还原峰,Pd-Cu双金属催化剂则只存在一个宽化的还原峰,这说明了Pd-Cu之间结构上的紧密接触使得两种金属之间存在强相互作用,其中可能存在从Pd向Cu的电子转移.综合这些结构和电子效应,可以推测Pd的存在促进了Cu粒子对山梨醇的脱氢能力和不饱和中间体的加氢能力,进而提高了Cu基催化剂在山梨醇氢解反应中的活性及目标产物的选择性.同时Pd-Cu之间的强相互作用和氢溢流效应抑制了Cu粒子在水热反应条件下的聚集,提高了催化剂的稳定性.这些结果和认识有助于指导人们为多元醇氢解和其它生物质基化学品的转化反应设计具有更高效率和水热稳定性的新型Cu基催化剂.  相似文献   

14.
以硝酸镍和偏硅酸钠为原料,采用并流共沉淀和氢气还原-钝化的方法制备了Ni/Si O2催化剂,通过BET、XRD、H2-TPD、NH3-TPD、HRTEM、XPS等手段对催化剂的理化性质进行了表征,发现合成得到的Ni/Si O2催化剂具有良好的织构性质、极高的金属分散度和活性比表面积,并且对甘油氢解生成1,2-丙二醇的反应表现出良好的活性和选择性.研究还考察了催化剂的镍硅比、反应停留时间、反应压力、甘油浓度对甘油氢解性能的影响,发现在镍硅比为0.5,反应停留时间为2 h,反应压力为5.5 MPa,甘油浓度为10%的条件下,甘油的单程转化率达78.8%,1,2-丙二醇的选择性高达92.9%.  相似文献   

15.
随着生物柴油产业的快速发展,作为副产物的甘油大量过剩,因而有效利用甘油既能促进生物柴油产业的良性发展,又能节约大量石油资源。通过甘油催化氢解的方式来制备高附加值化学品丙二醇、乙二醇和丙醇等是甘油转化研究中最有潜在应用价值的路径之一,甘油氢解反应易于实现连续化生产,且目标产物附加值高、选择性高,因而具有良好的经济效益。本文首先简要介绍了甘油化学,深入探讨了甘油的氢解机理,然后重点综述了甘油氢解制备1, 2-丙二醇、1, 3-丙二醇、乙二醇和丙醇高效催化剂的研究进展,并对甘油氢解未来的研究方向和发展趋势作了进一步展望。  相似文献   

16.
袁静  李舒爽  于磊  刘永梅  曹勇 《催化学报》2013,34(11):2066-2074
以甲酸作为氢源, 采用铜基复合金属氧化物催化剂, 催化氢解甘油制备1,2-丙二醇, 其中液相甲酸的高选择性分解是实现甘油氢解的必要和关键步骤. 活性测试表明, 高分散的铜和ZrO2载体间的协同作用对甲酸分解和甘油到1,2-丙二醇的转化至关重要, 20%Cu/ZrO2催化剂的活性最佳. 由于避免使用相对昂贵的化石燃料氢, 因而该催化体系在生物质的高值利用方面具有潜在的应用前景.  相似文献   

17.
王帅  李洋  刘海超 《化学学报》2012,70(18):1897-1903
我们通过乙醇溶液浸渍法合成出了具有高分散度金属Cu 的Cu/MgO-Al2O3 (Mg/Al 原子比=1/1, 3/1, 4/1)、Cu/MgO 和Cu/Al2O3 等催化剂. 在200℃, 6.0 MPa H2 和二氧六环溶剂中, 这些催化剂高选择性地将甘油氢解为1,2-丙二醇(选择性>90%), 而单位表面Cu 原子的甘油转化速率则随催化剂表面碱中心与Cu 原子比例的提高而增大. N2O 化学吸附-H2 程序升温还原实验表明Cu 粒子的本征氢解能力不随其负载量以及载体中的Mg/Al 原子比发生明显改变, 加之碱性MgO-Al2O3 载体本身不催化甘油的转化, 我们推测在甘油氢解反应中金属Cu 粒子与载体界面处的碱中心辅助Cu 粒子活化甘油分子的α 位C-H键, 从而加速甘油脱氢为甘油醛步骤以及甘油氢解反应的进行. CO2程序升温脱附实验以及对甘油氢解反应中Cu/MgO-Al2O3 催化剂稳定性的考察结果暗示在甘油氢解反应中起主要作用的碱中心是载体表面上与Mg2+键连的羟基基团(即B 碱OH-). 这些对甘油氢解反应中金属中心与碱性中心协同作用的认识对进一步理性设计高效的甘油或其它多元醇分子氢解催化剂具有重要指导意义.  相似文献   

18.
采用密度泛函理论研究了ZrO2负载的Ru基、Rh基以及Re改性的Rh基、Ir基催化剂上甘油氢解生成1,2-丙二醇和1,3-丙二醇的热力学过程, 重点考察了ReOx调变催化剂活性和选择性的作用机制. 结果表明, Ru/ZrO2和Rh/ZrO2催化剂上甘油分解经由脱水-加氢反应途径, 1,2-丙二醇的生成是热力学有利过程, 其中Ru基催化剂活性更高. 在Re修饰的Rh基和Ir基催化剂上, 反应遵循直接氢解机理, 其中金属表面解离的氢原子进攻ReOx团簇上与醇盐紧邻的C-O键是催化甘油转化为丙二醇最核心的步骤. ReOx-Rh/ZrO2催化剂上1,2-丙二醇为主要产物, 并伴随1,3-丙二醇的生成, ReOx的修饰则显著提高了Ir/ZrO2催化剂上1,3-丙二醇选择性. 与单金属催化剂上发生的间接氢解机理相比, 修饰催化剂上1,3-丙二醇选择性的提高可主要归因于Rh(Ir)-Re协同催化的直接氢解反应过程, 其中羟基化铼官能团有利于末端醇盐中间体的生成. ReOx-Ir/ZrO2催化剂上较大的Ir-Re团簇使得末端金属醇盐的立体优选性比次级醇盐更为突出, 从而具有最高的1,3-丙二醇选择性.  相似文献   

19.
 采用 X 射线衍射、热重、NH3 程序升温脱附、CO2 程序升温脱附等手段研究了 Al2O3, MgO, CaO 和 KNO3 改性 MgO 催化剂的结构和酸碱性质, 并在固定床反应装置上考察了上述催化剂气相催化转化 1,2-丙二醇反应性能. 结果表明, 催化剂表面的酸碱性对 1,2-丙二醇气相转化反应的产物分布有显著影响. Al2O3 催化剂上的产物以丙醛和丙酮为主; MgO 催化剂上的主要产物为丙酮醇; CaO 催化剂上丙酮和丙烯醇选择性相对较高; KNO3 改性 MgO 催化剂上环氧丙烷选择性显著升高. 结合不同催化剂酸碱性质及其反应结果, 提出了 1,2-丙二醇气相转化的 6 个主要反应途径, 明确了各反应途径与催化剂酸碱性质的关系.  相似文献   

20.
同时含有金属和酸性位点的双功能催化剂已广泛用于石油加氢裂解和可再生生物质转化中.这两种位点之间的距离对双功能协同作用起着至关重要的作用,进而影响催化剂的活性与选择性.近年来,由生物质转化生产生物燃料和化学品得到了广泛的关注.相比于石油裂解工艺,金属-酸性位点临近效应在生物质转化反应中鲜有报道.甘油是来自生物柴油生产过程中的廉价副产物(约总产量的10%).通过选择性氢解将其转化为具有高附加价值的化学品如1,2-丙二醇和1,3-丙二醇,这是提高其附加值的主要途径.甘油氢解包含脱水与加氢两个过程,分别发生于酸性位点与金属位点上.根据文献报道,Lewis酸位点倾向于进攻甘油端位的羟基,生成中间产物丙酮醇,而Br?nsted酸则更易进攻甘油中间位的羟基产生3-羟基丙醛;随后两者进一步加氢分别生成1,2-丙二醇和1,3-丙二醇.负载型金属催化剂广泛应用于甘油氢解反应中,在金属催化剂中添加酸性助剂能显著提高催化剂的活性.大量研究表明,无论是将酸性物种添加到金属颗粒表面或者是载体上甚至是简单的物理混合,均能有效提升催化剂的催化性能.然而据我们所知,金属-酸性位点之间的临近效应还未在甘油氢解反应中报道过.本文利用原子层沉积技术(ALD)在Pt/Al_2O_3催化剂表面精确沉积了一层酸性多孔的氧化铝包裹层,同时提高了Pt催化剂的活性与1,2-丙二醇选择性;我们进一步通过高分辨透射电镜(HRTEM)、一氧化碳吸附漫反射红外光谱(CO DRIFTS)、吡啶DRIFTS等手段研究了Al_2O_3包裹层造成催化活性提升的原因.30个ALD周期氧化铝包裹后的催化剂具有最高的活性与选择性,HRTEM观测到催化剂中的Pt纳米颗粒的尺寸为7nm,氧化铝包裹层厚度为3.6 nm.与未包裹的Pt/Al_2O_3催化剂相比,沉积在Pt纳米颗粒上的酸性Al_2O_3与Pt颗粒形成更多的金属-酸性位点界面,从而提升了Pt与Al_2O_3酸性位点的亲密性.由于生长的氧化铝薄膜与载体氧化铝为相同物种,因此催化剂包裹前后总体的酸度并未发生明显改变,与吡啶化学吸附实验结果相一致.TEM测试发现,氧化铝包裹层在催化反应测试后会发生部分脱落.CO DRIFTS结果同样表明,随着反应时间的增加,Pt上CO的吸收峰逐渐增强,再次证实了Pt颗粒表面包裹层的脱落;但还发现一个位于1963 cm~(-1)的新CO吸附峰.该峰可归属于吸附于Pt与Al_2O_3包裹层界面的桥式CO.此外,我们对其丙酮醇中间产物做了加氢反应的对比实验.结果表明Al_2O_3包裹层对Pt的加氢性能并未增加,说明甘油氢解反应的速控步骤是脱水.因此,我们初步认为,Al_2O_3包裹对甘油氢解反应活性的提高是通过其酸性而促进甘油脱水反应所致.我们还研究了Pt尺寸效应对甘油氢解反应的影响,发现小颗粒Pt对1,2-丙二醇的选择性比大颗粒更高,而活性更低,这表明甘油氢解是一个结构敏感反应.因此,Al_2O_3包裹层对1,2-丙二醇选择性的提高可能是由于几何效应造成的,Pt颗粒表面被Al_2O_3包裹层分割为许多Pt聚集体,类似于减小颗粒尺寸,从而提高了反应选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号