首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Exact solutions to conformable time fractional (3+1)-dimensional equations are derived by using the modified form of the Kudryashov method. The compatible wave transformation reduces the equations to an ODE with integer orders. The predicted solution of the finite series of a rational exponential function is substituted into this ODE.The resultant polynomial equation is solved by using algebraic operations. The method works for the Jimbo–Miwa, the Zakharov–Kuznetsov, and the modified Zakharov–Kuznetsov equations in conformable time fractional forms. All the solutions are expressed in explicit forms.  相似文献   

2.
The conservation laws for the (1+2)-dimensional Zakharov-Kuznetsov modified equal width (ZK-MEW) equation with power law nonlinearity are constructed by using Noether's approach through an interesting method of increasing the order of this equation. With the aid of an obtained conservation law, the generalized double reduction theorem is applied to this equation. It can be shown that the reduced equation is a second order nonlinear ODE. FinaJ1y, some exact solutions for a particular case of this equation are obtained after solving the reduced equation.  相似文献   

3.
In this paper, the ($G′/G$)-expansion method is suggested to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential difference equation into its differential difference equation of integer order. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.  相似文献   

4.
YUSUF PANDIR 《Pramana》2014,82(6):949-964
In this paper, new exact solutions, including soliton, rational and elliptic integral function solutions, for the generalized Zakharov–Kuznetsov modified equal-width equation are obtained using a new approach called the extended trial equation method. In this discussion, a new version of the trial equation method for the generalized nonlinear partial differential equations is offered.  相似文献   

5.
In this letter, the φ6 φ5 model in (D 1) dimensions can be solved by a truncated series method. A series of solitary solutions of the φ6 φ5 model in (D 1) dimensions have be obtained.  相似文献   

6.
The Bosonized Supersymmetric Sawada–Kotera(BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada–Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out.  相似文献   

7.
Dark soliton solutions for space-time fractional Sharma–Tasso–Olver and space-time fractional potential Kadomtsev–Petviashvili equations are determined by using the properties of modified Riemann–Liouville derivative and fractional complex transform. After reducing both equations to nonlinear ODEs with constant coefficients, the tanh ansatz is substituted into the resultant nonlinear ODEs. The coefficients of the solutions in the ansatz are calculated by algebraic computer computations. Two different solutions are obtained for the Sharma–Tasso–Olver equation as only one solution for the potential Kadomtsev–Petviashvili equation. The solution profiles are demonstrated in 3D plots in finite domains of time and space.  相似文献   

8.
The present paper studies the unstable nonlinear Schr¨odinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schr¨odinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schr¨odinger equation and its modified form are formally obtained.  相似文献   

9.
Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)- dimensional dispersive long-wave equations are obtained.  相似文献   

10.
11.
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.  相似文献   

12.
In this article,we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the modified simple equation method.The proposed method is so powerful and effective to solve nonlinear space-time fractional differential equations by with modified Riemann–Liouville derivative.  相似文献   

13.
In this paper, the Lie group classification method is performed on the fractional partial differential equation (FPDE), all of the point symmetries of the FPDEs are obtained. Then, the symmetry reductions and exact solutions to the fractional equations are presented, the compatibility of the symmetry analysis for the fractional and integer-order cases is verified. Especially, we reduce the FPDEs to the fractional ordinary differential equations (FODEs) in terms of the Erdélyi-Kober (E-K) fractional operator method, and extend the power series method for investigating exact solutions to the FPDEs.  相似文献   

14.
In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada–Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed.  相似文献   

15.
研究了含有带正负电的冷离子和热电子的磁化等离子体系统.运用约化摄动法从该系统的运动方程中推导出Zakharov-Kuznetsov(ZK)方程、改进的ZK方程和耦合ZK方程.给出了这些方程的一种孤立波解,得到了孤立波的振幅、宽度、传播速度与负离子和正离子的质量比、负离子数密度、磁场强度的关系以及正离子和负离子在运动过程中的位移图像. 关键词: Zakharov-Kuznetsov(ZK)方程 改进的ZK方程 耦合ZK方程 约化摄动法  相似文献   

16.
M.M.  Hassan 《理论物理通讯》2010,53(4):596-604
Abundant new exact solutions of the Schamel-Korteweg-de Vries (S-KdV) equation and modified Zakharov- Kuznetsov equation arising in plasma and dust plasma are presented by using the extended mapping method and the availability of symbolic computation. These solutions include the Jacobi elliptic function solutions, hyperbolic function solutions, rational solutions, and periodic wave solutions. In the limiting cases, the solitary wave solutions are obtained and some known solutions are also recovered.  相似文献   

17.
In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established.  相似文献   

18.
In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the exp(-φ(ε))-expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.  相似文献   

19.
尹君毅 《物理学报》2014,63(23):230202-230202
对(G′/G)展开法做了进一步的研究,利用两次函数变换将二阶非线性辅助方程的求解问题转化为一元二次代数方程与Riccati方程的求解问题.借助Riccati方程的B?cklund变换及解的非线性叠加公式获得了辅助方程的无穷序列解.这样,利用(G′/G)展开法可以获得非线性发展方程的无穷序列解,这一方法是对已有方法的扩展,与已有方法相比可获得更丰富的无穷序列解.以(2+1)维改进的Zakharov-Kuznetsov方程为例得到了它的无穷序列新精确解.这一方法可以用来构造其他非线性发展方程的无穷序列解.  相似文献   

20.
In this paper we find the solution of linear as well as nonlinear fractional partial differential equations using discrete Adomian decomposition method. Here we develop the discrete Adomian decomposition method to find the solution of fractional discrete diffusion equation, nonlinear fractional discrete Schrodinger equation, fractional discrete Ablowitz-Ladik equation and nonlinear fractional discrete Burger's equation. The obtained solution is verified by comparison with exact solution when $\alpha=1$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号