首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
《中国物理 B》2021,30(5):50201-050201
We study the exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions. The energy and Bethe ansatz equations of the Gaudin model can be obtained via the off-diagonal Bethe ansatz method. Based on the off-diagonal Bethe ansatz solutions, we construct the Bethe states of the inhomogeneous X X X Heisenberg spin chain with the generic open boundaries. By taking a quasi-classical limit, we give explicit closed-form expression of the Bethe states of the Gaudin model. From the numerical simulations for the small-size system, it is shown that some Bethe roots go to infinity when the Gaudin model recovers the U(1) symmetry. Furthermore,it is found that the contribution of those Bethe roots to the Bethe states is a nonzero constant. This fact enables us to recover the Bethe states of the Gaudin model with the U(1) symmetry. These results provide a basis for the further study of the thermodynamic limit, correlation functions, and quantum dynamics of the Gaudin model.  相似文献   

2.
We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical potential, four types of the ground-state phases are discovered. The effects of the disorder, the on-site interaction and the long-range interaction on the quantum coherence are studied. For the system without the long-range interaction, the quantum coherence changes from one periodic oscillation to two periodic oscillations as the onsite interaction increases. By considering the long-range interaction, the quantum coherence goes back to one periodic oscillation again. The on-site interaction itself suppresses the quantum coherence, both the on-site interaction and long-range interaction together enhance the quantum coherence with the weak disorder. If the disorder strength is increased beyond a critical value,they start to suppress the quantum coherence. In a regular four-chain Bose–Hubbard model, i.e.,each chain has many optical potentials, the ground-state phase transitions are obtained by using the cluster Gutzwiller mean-field method. Exotic ground-state phases are found, i.e., superfluid phase, integer Mott insulator phase, supersolid phase and loophole insulator phase. The combination of the loophole insulator phase and the supersolid phase expands the lobes with the half-integer filling per site for the small ratio β = t_■/t_⊥.  相似文献   

3.
We consider the construction of exact eigenstates of the two-dimensional Fermi–Hubbard model defined on an L × L lattice with a periodic condition. Based on the characteristics of Slater determinants, several methods are introduced to construct exact eigenstates of the model. The eigenstates constructed are independent of the on-site electron interaction and some of them can also represent exact eigenstates of the two-dimensional Bose–Hubbard model.  相似文献   

4.
We study the topological properties of Bogoliubov excitation modes in a Bose–Hubbard model of three-dimensional(3 D) hyperhoneycomb lattices. For the non-interacting case, there exist nodal loop excitations in the Bloch bands. As the on-site repulsive interaction increases, the system is first driven into the superfluid phase and then into the Mott-insulator phase. In both phases, the excitation bands exhibit robust nodal-loop structures and bosonic surface states. From a topology point of view, these nodal-loop excitation modes may be viewed as a permanent fingerprint left in the Bloch bands.  相似文献   

5.
The functional integral approach (FIA) is introduced to study the transition temperature of an imperfect Bose gas in traps. An interacting model in quantum statistical mechanics is presented. With the model we study a Bose gas with attractive interaction trapped in an external potential, We obtain the result that the transition temperature of a trapped Bose gas will slightly shift upwards owing to the attractive interacting force. Successful application of the FIA to Bose systems is demonstrated.  相似文献   

6.
周玲  刘忠菊  闫伟斌  穆青霞 《中国物理 B》2011,20(7):74205-074205
An array of coupled cavities, each of which contains an N four-level atom, is investigated. When cavity fields dispersively interact with the atoms, an effective Bose—Hubbard model can be achieved. By numerically comparing the full Hamiltonian with the effective one, we find that within the parameters region, the effective Hamiltonian can completely account for the Mott-insulator as well as the phase transition from the similar Mott-insulator to superfluid. Through jointly adjusting the classical Rabi frequency and the detuning, the nonlinearity can be improved.  相似文献   

7.
A systematic study of the chaotic synchronization of Bose–Einstein condensed body is performed using linear coupling method based on Lyapunov stability theory, Sylvester's criterion, and Gerschgorin disc theorem. The chaotic synchronization of Bose–Einstein condensed body in moving optical lattices is realized by linear coupling. The relationship between the synchronization time and coupling coefficient is obtained. Both the single-variable coupling and double-variable coupling are effective. The results of numerical calculation prove that the chaotic synchronization of double-variable coupling is faster than that of single-variable coupling and small coupling coefficient can achieve the chaotic synchronization.Weak noise has little influence on synchronization effect, so the linear coupling technology is suitable for the chaotic synchronization of Bose–Einstein condensate.  相似文献   

8.
In current paper we study the so-called "complete condensation" of zero range process on the fitness network. It is found that under the high temperature limit,the condensation behavior on the fitness model converges to that of the scale-free network,as expected. However,at some temperatures below the critical temprature of Bose–Einstein condensate phase on the fitness network,the complete condensation occurs as well for some values of δδ_c,which is impossible on scale-free network according to the criterion.  相似文献   

9.
Density order is usually a consequence of the competition between long-range and short-range interactions. Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition between frustrations and local interactions. This transition is found in a Bose–Hubbard model on a frustrated triangle lattice with an extra pairing term. Furthermore, we find a quantum phase transition between two different density ordered superfluids, which is beyond the Landau–Gi...  相似文献   

10.
We introduce a two-dimensional Bose–Einstein condensation model consisting of massive photon and photon-pair.Based on the new nonlinear model, the traditional process of second harmonics generation is reinvestigated. In order to describe the process, a new quantum phase, the harmonic phase, is introduced. The order parameter of the new physical phase is also given in this paper.  相似文献   

11.
《中国物理 B》2021,30(6):60306-060306
The superfluid states of attractive Hubbard model in α–T_3 lattice are investigated. It is found that one usual needs three non-zero superfluid order parameters to describe the superfluid states due to three sublattices. When two hopping amplitudes are equal, the system has particle–hole symmetry. The flat band plays an important role in superfluid pairing near half filling. For example, when the filling factor falls into the flat band, the large density of states in the flat band favors superfluid pairing and the superfluid order parameters reach relatively large values. When the filling factor is in the gap between the flat band and upper band, the superfluid order parameters take small values due to the vanishing of density of states. The superfluid order parameters show nonmonotonic behaviors with the increase of filling factor. At last, we also investigate the edge states with open boundary conditions. It is shown that there exist some interesting edge states in the middle of quasi-particle bands.  相似文献   

12.
We proposed a modified ratchet model including power-stroke and elastic coupling to study the efficiency of collective non-processive motors such as myosin Ⅱ in muscle. Our theoretical results are in good agreement with the experimental data. Our study not only reveals that the maximum efficiency depends on elasticity and is independent of transition rates but also indicates that the parameters fitted to fast muscle are different from those fitted to a slow one. The latter may imply that the structure of the fast muscle is different from that of the slow one. The main reason that our model succeeds is that velocity in this model is an independent variable.  相似文献   

13.
14.
A theoretical study of the BCS-BEC crossover is presented. Starting from a two-channel Boson-Fermion resonance model, the BCS-Bogoiubov mean-field method and the Green's function method are adopted. The result shows that we can end up with a BCS-type theory but with a composite order parameter. Calculation shows that the Bose condensate of BCS Cooper pairs is proportional to the molecular BEC of Bose molecules. The resonance superfluid phase is indicated by the energy spectrum with an obvious interpretation of the transition mechanism.  相似文献   

15.
严玉为  蒋沅  余荣斌  杨松青  洪成 《中国物理 B》2022,31(1):18901-018901
With the development of network science,the coupling between networks has become the focus of complex network research.However,previous studies mainly focused on the coupling between nodes,while ignored the coupling between edges.We propose a novel cascading failure model of two-layer networks.The model considers the different loads and capacities of edges,as well as the elastic and coupling relationship between edges.In addition,a more flexible load-capacity strategy is adopted to verify the model.The simulation results show that the model is feasible.Different networks have different behaviors for the same parameters.By changing the load parameters,capacity parameters,overload parameters,and distribution parameters reasonably,the robustness of the model can be significantly improved.  相似文献   

16.
A semi-empirical equation of state model for aluminum in a warm dense matter regime is constructed. The equation of state, which is subdivided into a cold term, thermal contributions of ions and electrons, covers a broad range of phase diagram from solid state to plasma state. The cold term and thermal contribution of ions are from the Bushman–Lomonosov model, in which several undetermined parameters are fitted based on equation of state theories and specific experimental data. The Thomas–Fermi–Kirzhnits model is employed to estimate the thermal contribution of electrons. Some practical modifications are introduced to the Thomas–Fermi–Kirzhnits model to improve the prediction of the equation of state model. Theoretical calculation of thermodynamic parameters, including phase diagram, curves of isothermal compression at ambient temperature, melting, and Hugoniot, are analyzed and compared with relevant experimental data and other theoretical evaluations.  相似文献   

17.
18.
Spontaneous symmetry breaking is related to the appearance of emergent phenomena, while a non-vanishing order parameter has been viewed as the sign of turning into such symmetry-breaking phase. We study the spontaneous symmetry breaking in the conventional superconductor and Bose–Einstein condensation with a continuous measure of symmetry by showing that both the many-body systems can be mapped into the many spin model. We also formulate the underlying relation between the spontaneous symmetry breaking and the order parameter quantitatively. The degree of symmetry stays unity in the absence of the two emergent phenomena, while decreases exponentially at the appearance of the order parameter which indicates the inextricable relation between the spontaneous symmetry and the order parameter.  相似文献   

19.
We investigate a kind of solitons in the two-component Bose–Einstein condensates with axisymmetric configurations in the R2×S1space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional(3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross–Pitaevskii equations in imaginary time.  相似文献   

20.
We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号