首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of the wave function collapse (a problem of measurement in quantum mechanics) is considered. It is shown that it can be solved based on quantum mechanics and does not require any additional assumptions or new theories. The particle creation and annihilation processes, which are described based on quantum field theory, play a key role in the measurement processes. Superposition principle is not valid for the system of equations of quantum field theory for particles and fields, because this system is a non-linear. As a result of the creation (annihilation) of a particle, an additional uncertainty arises, which "smears" the interference pattern. The imposition of such a large number of uncertainties in the repetitive measurements leads to the classical behavior of particles. The decoherence theory also implies the creation and annihilation of particles, and this processes are the consequence of non-linearity of quantum mechanics. In this case, the term "collapse of the wave function" becomes a consequence of the other statements of quantum mechanics instead of a separate postulate of quantum mechanics.  相似文献   

2.
The possibility of consistency between the basic quantum principles of quantum mechanics and wave function collapse is reexamined. A specific interpretation of environment is proposed for this aim and is applied to decoherence. When the organization of a measuring apparatus is taken into account, this approach leads also to an interpretation of wave function collapse, which would result in principle from the same interactions with environment as decoherence. This proposal is shown consistent with the non-separable character of quantum mechanics.  相似文献   

3.
The gravity-related model of spontaneous wave function collapse, a longtime hypothesis, damps the massive Schrödinger Cat states in quantum theory. We extend the hypothesis and assume that spontaneous wave function collapses are responsible for the emergence of Newton interaction. Superfluid helium would then show significant and testable gravitational anomalies.  相似文献   

4.
It is argued that the distinction between matter wave and probability wave is made clear when the problem is considered from the field-theory viewpoint. Interference can take place for each of these waves, and the similarity as well as dissimilarity between the two cases is discussed.  相似文献   

5.
The possibility to formulate classical statistical mechanics in terms of the complex wave function and density matrix obeying the evolution equation is discussed. It is shown that the modulus squared of the introduced wave function of the classical particle has the same physical meaning as the modulus squared of the wave function of the quantum particle. The tomographic probabilities are studied for both classical and quantum states. Integrals of motion and their relation to the propagators are discussed.  相似文献   

6.
The Casimir energy for a compact dielectric sphere is considered in a novel way, using the quantum statistical method introduced by Høye and Stell and others. Dilute media are assumed. It turns out that this method is a very powerful one: we are actually able to derive an expression for the Casimir energy that contains also the negative part resulting from the attractive van der Waals forces between the molecules. It is precisely this part of the Casimir energy that has turned out to be so difficult to extract from the formalism when using the conventional field-theoretic methods for a continuous medium. Assuming a frequency cutoff, our results are in agreement with those recently obtained by G. Barton.  相似文献   

7.
Mathematical models for the stochastic evolution of wave functions that combine the unitary evolution according to the Schrödinger equation and the collapse postulate of quantum theory are well understood for non-relativistic quantum mechanics. Recently, there has been progress in making these models relativistic. But even with a fully relativistic law for the wave function evolution, a problem with relativity remains: Different Lorentz frames may yield conflicting values for the matter density at a space-time point. We propose here a relativistic law for the matter density function. According to our proposal, the matter density function at a space-time point x is obtained from the wave function ψ on the past light cone of x by setting the i-th particle position in |ψ|2 equal to x, integrating over the other particle positions, and averaging over i. We show that the predictions that follow from this proposal agree with all known experimental facts.  相似文献   

8.
9.
We numerically solve the functional differential equations (FDEs) of 2-particle electrodynamics, using the full electrodynamic force obtained from the retarded Lienard–Wiechert potentials and the Lorentz force law. In contrast, the usual formulation uses only the Coulomb force (scalar potential), reducing the electrodynamic 2-body problem to a system of ordinary differential equations (ODEs). The ODE formulation is mathematically suspect since FDEs and ODEs are known to be incompatible; however, the Coulomb approximation to the full electrodynamic force has been believed to be adequate for physics. We can now test this long-standing belief by comparing the FDE solution with the ODE solution, in the historically interesting case of the classical hydrogen atom. The solutions differ. A key qualitative difference is that the full force involves a delay torque. Our existing code is inadequate to calculate the detailed interaction of the delay torque with radiative damping. However, a symbolic calculation provides conditions under which the delay torque approximately balances (3rd order) radiative damping. Thus, further investigations are required, and it was prematurely concluded that radiative damping makes the classical hydrogen atom unstable. Solutions of FDEs naturally exhibit an infinite spectrum of discrete frequencies. The conclusion is that (a) the Coulomb force is not a valid approximation to the full electrodynamic force, so that (b) the n-body interaction needs to be reformulated in various current contexts such as molecular dynamics.  相似文献   

10.
11.
Based on the multidimensional Ermakov theory, a general result that relates the Schrodinger equation and the Milne equation in terms of a space invariant is established. Using this result not only the role of phase in the Wigner function approach to quantum mechanics is demonstrated but also a better explanation for the Aharonov–Bohm effect is sought in terms of a fundamental phase and the matter-field-coupling current. The existence of a similar space invariant is also emphasized for the nonlinear Schrodinger equation.  相似文献   

12.
No Heading The idea that in dynamical wave function collapse models the wave function is superfluous is investigated. Evidence is presented for the conjecture that, in a model of a field theory on a 1+1 lightcone lattice, knowing the field configuration on the lattice back to some time in the past, allows the wave function or quantum state at the present moment to be calculated, to arbitrary accuracy so long as enough of the past field configuration is known.  相似文献   

13.
Proceeding from the method of packing operators developed by Sokolov and from the “light front variables” technique, the explicit formulae for packing operators and auxiliary mass operators for a system of three particles with arbitrary spins are derived. It is shown that for the packing operators there exists an infinite number of solutions yielding different physical consequences. The problem of the theory substantiation is discussed; the arguments in favour of a certain choice of packing operators are produced.  相似文献   

14.
15.
By using Hamilton-Jacobi-Bellman equation with complex time, we investigate quantum theory in timelike curve. State vectors of a physical system in the two-dimensional timelike curve not only obey Schrödinger equation in the observed timespace but also involve random motion in the traversal timespace. The random motion with hidden variables is successfully to explain why the wave function is a probability wave. Quantum measurement are discussed in present work. The results are in agreement with the conventional interpretation of quantum theory.  相似文献   

16.
The old Bohr–Einstein debate about the completeness of quantum mechanics (QM) was held on an ontological ground. The completeness problem becomes more tractable, however, if it is preliminarily discussed from a semantic viewpoint. Indeed every physical theory adopts, explicitly or not, a truth theory for its observative language, in terms of which the notions of semantic objectivity and semantic completeness of the physical theory can be introduced and inquired. In particular, standard QM adopts a verificationist theory of truth that implies its semantic nonobjectivity; moreover, we show in this paper that standard QM is semantically complete, which matches Bohr's thesis. On the other hand, one of the authors has provided a Semantic Realism (or SR) interpretation of QM that adopts a Tarskian theory of truth as correspondence for the observative language of QM (which was previously mantained to be impossible); according to this interpretation QM is semantically objective, yet incomplete, which matches EPR's thesis. Thus, standard QM and the SR interpretation of QM come to opposite conclusions. These can be reconciled within an integrationist perspective that interpretes non-Tarskian theories of truth as theories of metalinguistic concepts different from truth.  相似文献   

17.
A model of a kicked particle in an infinite potential well is studied. We presented the wave functions of the system applying a direct perturbation method. Theoretical analyses and numerical calculations show that the wave function is discontinuous across each kicking instant. As an extension of this result, we find that the wave function of any periodically kicked system usually has this property. Therefore, at each kicking instant, the wave function chooses randomly between the limits on either side and may be hopping.  相似文献   

18.
19.
The Newton equation of motion is derived from quantum mechanics.  相似文献   

20.
K. Lewin 《Foundations of Physics》2009,39(10):1145-1160
It is pointed out that ordinary quantum mechanics as a classical field theory cannot account for the wave function collapse if it is not seen within the framework of field quantization. That is needed to understand the particle structure of matter during wave function evolution and to explain the collapse as symmetry breakdown by detection. The decay of a two-particle bound s state and the Stern-Gerlach experiment serve as examples. The absence of the nonlocality problem in Bohm’s version of the EPR arrangement favours the approach described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号