首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, an adaptation of the tanh/tan-method that is discussed usually in the nonlinear partial differential equations is presented to solve nonlinear polynomial differential-difference equations. As a concrete example, several solitary wave and periodic wave solutions for the chain which is related to the relativistic Toda lattice are derived. Some systems of the differential-difference equations that can be solved using our approach are listed and a discussion is given in conclusion.  相似文献   

2.
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.  相似文献   

3.
With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.  相似文献   

4.
Abstract In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f (ξ), is constructed to explore the new solitary wave solutions for nonlinear evolution equations. The method is applied to a compound KdV-Burgers equation, and abundant new solitary wave solutions are obtained. The algorithm is also applicable to a large variety of nonlinear evolution equations.  相似文献   

5.
In this paper, similarity reductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m,n) equations) utt=(un)xx+(um)xxxx, which is a generalized model of Boussinesq equation utt=(u2)xx+uxxxx and modified Bousinesq equation utt=(u3)xx+uxxxx, are considered by using the direct reduction method. As a result, several new types of similarity reductions are found. Based on the reduction equations and some simple transformations, we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1,n) equations and B(m,m) equations, respectively.  相似文献   

6.
In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f(ξ), is constructed to explore the new solitary wave solutions for nonlinear evolution equations. The method is applied to a compound KdV-Burgers equation, and abundant new solitary wave solutions are obtained. The algorithm is also applicable to a large variety of nonlinear evolution equations.  相似文献   

7.
In this paper, similarity rcductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m, n) equations) utt = (un)xx (um) which is a generalized model of Boussinesq equation uts = (u2)xx u and modified Bousinesq equation utt = (u3)xx uxxxx, are considered by using the direct reduction method. As a result,several new types of similarity reductions are found. Based on the reduction equations and some simple transformations,we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1, n) equations and B(m, m)equations, respectively.``  相似文献   

8.
With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Schrödinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.  相似文献   

9.
Some new exact travelling wave and period solutions of discrete nonlinear Schrödinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.  相似文献   

10.
Dynamical system theory is applied to the integrable nonlinear wave equation $u_t±(u^3−u^2)x+(u^3)xxx=0$. We obtain the single peak solitary wave solutions and compacton solutions of the equation. Regular compacton solution of the equation corresponds to the case of wave speed $c$=0. In the case of $c^6$≠0, we find smooth soliton solutions. The influence of parameters of the traveling wave solutions is explored by using the phase portrait analytical technique. Asymptotic analysis and numerical simulations are provided for these soliton solutions of the nonlinear wave equation.  相似文献   

11.
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.  相似文献   

12.
New Solitary Wave Solutions to the KdV-Burgers Equation   总被引:12,自引:0,他引:12  
Based on the analysis on the features of the Burgers equation and KdV equation as well as KdV-Burgers equation, a superposition method is proposed to construct the solitary wave solutions of the KdV-Burgers equation from those of the Burgers equation and KdV equation, and then by using it we obtain many solitary wave solutions to the KdV-Burgers equation, some of which are new ones.PACS: 02.30.Jr; 03.65.Ge  相似文献   

13.
含高阶非线性效应的薛定谔方程的精确解研究   总被引:1,自引:0,他引:1  
利用孤子理论,研究了含三次和五次非线性项的非线性薛定谔方程,在参数取不同值时得到了方程的新型亮孤子解、新型暗孤子解和新的三角函数周期解。  相似文献   

14.
In this paper, we study the generalized coupled Hirota Satsuma KdV system by using the new generalizedtransformation in homogeneous balance method. As a result, many explicit exact solutions, which contain new solitarywave solutions, periodic wave solutions, and the combined formal solitary wave solutions, and periodic wave solutions,are obtained.  相似文献   

15.
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

16.
We have found two types of important exact solutions,compacton solutions,which are solitary waves with the property that after colliding with their own kind,they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction,in the (1 1)D,(1 2)D and even (1 3)D models,and dromion solutions (exponentially decaying solutions in all direction) in many (1 2)D and (1 3)D models.In this paper,symmetry reductions in (1 2)D are considered for the break soliton-type equation with fully nonlinear dispersion (called BS(m,n) equation)ut b(u^m)xxy 4b(u^n δx^-1uy)x=0,which is a generalized model of (1 2)D break soliton equation ut buxxy 4buuy 4buxδx^-1uy=0,by using the extended direct reduction method.As a result,six types of symmetry reductions are obtained.Starting from the reduction equations and some simple transformations,we obtain the solitary wavke solutions of BS(1,n) equations,compacton solutions of BS(m,m-1) equations and the compacton-like solution of the potential form (called PBS(3,2)) ωxt b(ux^m)xxy 4b(ωx^nωy)x=0.In addition,we show that the variable ∫^x uy dx admits dromion solutions rather than the field u itself in BS(1,n) equation.  相似文献   

17.
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

18.
利用函数展开法求解修正耦合KdV(Coupled KdV,cKdV)方程组,得到几类孤立波解,包括扭结型-钟型、双扭结型、双钟型以及双扭结-双钟型结构的单孤子解.在不同的极限情况下,这些解分别退化为修正cKdV方程的扭结状或钟状孤波解.对孤立波的稳定性进行了数值研究,结果表明:修正cKdV方程既存在稳定的孤立波解,也存在不稳定的孤立波解.  相似文献   

19.
In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.  相似文献   

20.
In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号