首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐涛  陈勇  林机 《中国物理 B》2017,26(12):120201-120201
We investigate some novel localized waves on the plane wave background in the coupled cubic–quintic nonlinear Schr o¨dinger(CCQNLS) equations through the generalized Darboux transformation(DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higherorder localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions;(ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons;(iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α.These results further uncover some striking dynamic structures in the CCQNLS system.  相似文献   

2.
By Taylor expansion of Darboux matrix, a new generalized Darboux transformations(DTs) for a(2 + 1)-dimensional nonlinear Schrdinger(NLS) equation is derived, which can be reduced to two(1 + 1)-dimensional equation:a modified KdV equation and an NLS equation. With the help of symbolic computation, some higher-order rational solutions and rogue wave(RW) solutions are constructed by its(1, N-1)-fold DTs according to determinants. From the dynamic behavior of these rogue waves discussed under some selected parameters, we find that the RWs and solitons are demonstrated some interesting structures including the triangle, pentagon, heptagon profiles, etc. Furthermore, we find that the wave structure can be changed from the higher-order RWs into higher-order rational solitons by modulating the main free parameter. These results may give an explanation and prediction for the corresponding dynamical phenomena in some physically relevant systems.  相似文献   

3.
Based on the long wave limit method, the general form of the second-order and third-order rogue wave solutions to the focusing nonlinear Schr?dinger equation are given by introducing some arbitrary parameters. The interaction solutions between the first-order rogue wave and one-breather wave are constructed by taking a long wave limit on the two-breather solutions. By applying the same method to the three-breather solutions, two types of interaction solutions are obtained, namely the first-order...  相似文献   

4.
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.  相似文献   

5.
Dynamics of three nonisospectral nonlinear Schrdinger equations(NNLSEs), following different time dependencies of the spectral parameter, are investigated. First, we discuss the gauge transformations between the standard nonlinear Schrdinger equation(NLSE) and its first two nonisospectral counterparts, for which we derive solutions and infinitely many conserved quantities. Then, exact solutions of the three NNLSEs are derived in double Wronskian terms. Moreover,we analyze the dynamics of the solitons in the presence of the nonisospectral effects by demonstrating how the shapes,velocities, and wave energies change in time. In particular, we obtain a rogue wave type of soliton solutions to the third NNLSE.  相似文献   

6.
The purpose of the present paper is twofold. First, the projective Riccati equations (PREs for short) are resolved by means of a linearized theorem, which was known in the literature. Based on the signs and values of coeffcients of PREs, the solutions with two arbitrary parameters of PREs can be expressed by the hyperbolic functions, the trigonometric functions, and the rational functions respectively, at the same time the relation between the components of each solution to PREs is also implemented. Second, more new travelling wave solutions for some nonlinear PDEs, such as the Burgers equation, the mKdV equation, the NLS^+ equation, new Hamilton amplitude equation, and so on, are obtained by using Sub-ODE method, in which PREs are taken as the Sub-ODEs. The key idea of this method is that the travelling wave solutions of nonlinear PDE can be expressed by a polynomial in two variables, which are the components of each solution to PREs, provided that the homogeneous balance between the higher order derivatives and nonlinear terms in the equation is considered.  相似文献   

7.
We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schro¨dinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schro¨dinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schro¨dinger equation under a suitable parametric condition.  相似文献   

8.
徐涛  陈勇 《中国物理 B》2016,25(9):90201-090201
We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.  相似文献   

9.
We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are generated.Especially, the first-and second-order rogue wave pairs are discussed in detail. It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case. In the second-order rogue wave solution, the distribution structures can be in triangle,quadrilateral and ring shapes by fixing appropriate values of the free parameters. In contrast to single-component systems, there are always more abundant rogue wave structures in multi-component ones. It is shown that the two higher-order nonlinear coefficients ρ_1 and ρ_2 make some skews of the rogue waves.  相似文献   

10.
In this paper, we propose a combined form of the bilinear Kadomtsev–Petviashvili equation and the bilinear extended(2+1)-dimensional shallow water wave equation, which is linked with a novel(2+1)-dimensional nonlinear model. This model might be applied to describe the evolution of nonlinear waves in the ocean. Under the effect of a novel combination of nonlinearity and dispersion terms, two cases of lump solutions to the(2+1)-dimensional nonlinear model are derived by searching for the quadratic...  相似文献   

11.
Studied in this paper is a(2+1)-dimensional coupled nonlinear Schr?dinger system with variable coefficients,which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. According to the similarity transformation, we derive the type-Ⅰ and type-Ⅱ rogue-wave solutions. We graphically present two types of the rouge wave and discuss the influence of the diffraction parameter on the rogue waves.When the diffraction parameters are exponentially-growing-periodic, exponential, linear and quadratic parameters, we obtain the periodic rogue wave and composite rogue waves respectively.  相似文献   

12.
We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.  相似文献   

13.
Analytical solutions in terms of rational-like functions are presented for a(3+1)-dimensional nonlinear Schrdinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz.Several free functions of time t are involved to generate abundant wave structures.Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.  相似文献   

14.
In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schr¨odinger(NLS) equation. This model is derived as the equation governing the dynamics of modulated cutoff waves in a discrete nonlinear electrical lattice. It is characterized by the addition of two terms that involve time derivatives to the classical equation. Through those terms, our model is also tantamount to a generalized NLS equation with saturable;which suggests that the discrete electrical transmission lines can potentially be used to experimentally investigate wave propagation in media that are modeled by such type of nonlinearity. We demonstrate that the new terms can enlarge considerably the forms of the solutions as compared to similar NLS-type equations. Sine–Gordon expansion-method is used to derive numerous kink, antikink, dark, and bright soliton solutions.  相似文献   

15.
New exact solutions of nonlinear Klein--Gordon equation   总被引:2,自引:0,他引:2       下载免费PDF全文
郑强  岳萍  龚伦训 《中国物理》2006,15(1):35-38
New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein--Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.  相似文献   

16.
By means of the modified Darboux transformation we obtain some types of rogue waves in two-coupled nonlinear Schr ¨odinger equations.Our results show that the two components admits the symmetry and asymmetry rogue wave solutions,which arises from the joint action of self-phase,cross-phase modulation,and coherent coupling term.We also obtain the analytical transformation from the initial seed solution to unique rogue waves with the bountiful pair structure.In a special case,the asymmetry rogue wave can own the spatial and temporal symmetry gradually,which is controlled by one parameter.It is worth pointing out that the rogue wave of two components can share the temporal inversion symmetry.  相似文献   

17.
《中国物理 B》2021,30(6):60202-060202
The nonlinear Schro¨dinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schro¨dinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schro¨dinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.  相似文献   

18.
Based on the strain invariant relationship and taking the high-order elastic energy into account, a nonlinear wave equation is derived, in which the excitation, linear damping, and the other nonlinear terms are regarded as the first-order correction to the linear wave equation. To solve the equation, the biggest challenge is that the secular terms exist not only in the fundamental wave equation but also in the harmonic wave equation (unlike the Duffing oscillator, where they exist only in the fundamental wave equation). In order to overcome this difficulty and to obtain a steady periodic solution by the perturbation technique, the following procedures are taken: (i) for the fundamental wave equation, the secular term is eliminated and therefore a frequency response equation is obtained; (ii) for the harmonics, the cumulative solutions are sought by the Lagrange variation parameter method. It is shown by the results obtained that the second- and higher-order harmonic waves exist in a vibrating bar, of which the amplitude increases linearly with the distance from the source when its length is much more than the wavelength; the shift of the resonant peak and the amplitudes of the harmonic waves depend closely on nonlinear coefficients; there are similarities to a certain extent among the amplitudes of the odd- (or even-) order harmonics, based on which the nonlinear coefficients can be determined by varying the strain and measuring the amplitudes of the harmonic waves in different locations.  相似文献   

19.
The nonlinear Schr?dinger(NLS) equation and Boussinesq equation are two very important integrable equations.They have widely physical applications. In this paper, we investigate a nonlinear system, which is the two-component NLS equation coupled to the Boussinesq equation. We obtain the bright–bright, bright–dark, and dark–dark soliton solutions to the nonlinear system. We discuss the collision between two solitons. We observe that the collision of bright–bright soliton is inelastic and two solitons oscillating periodically can happen in the two parallel-traveling bright–bright or bright–dark soliton solution. The general breather and rogue wave solutions are also given. Our results show again that there are more abundant dynamical properties for multi-component nonlinear systems.  相似文献   

20.
We apply the (G’/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions, trigonometric functions, and rational functions with arbitrary parameters. We highlight the power of the (G’/G)-expansion method in providing generalized solitary wave solutions of different physical structures. It is shown that the (G’/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号