首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The one‐pot synthesis of a series of 1,2,4‐triazines from the reactions of semicarbazide or thiosemi‐carbazide with various α,β‐dicarbonyl compounds under reflux conditions in a EtOH‐H2O (9:1) mixture as solvent and catalyzed by nano‐sized silica supported FeCl3 (FeCl3@SiO2) was investigat‐ed. The FeCl3 content of the catalyst was measured by atomic absorption to get the adsorption ca‐pacity. The reactions gave high yields of the product and the catalyst was easily separated and re‐used for successive reaction runs without significant loss of activity.  相似文献   

2.
The intrinsic kinetics of dimethyl ether (DME) synthesis from syngas over a methanol synthesis catalyst mixed with methanol dehydration catalyst has been investigated in a tubular integral reactor at 3-7MPa and 220-260℃. The three reactions including methanol synthesis from CO and H2, CO2 and H2, and methanol dehydration were chosen as the independent reactions. The L-H kinetic model was presented for dimethyl ether synthesis and the parameters of the model were obtained by using simplex method combined with genetic algorithm. The model is reliable according to statistical analysis and residual error analysis. The synergy effect of the reactions over the bifunctional catalyst was compared with the effect for methanol synthesis catalyst under the same conditions based on the model. The effects of syngas containing N2 on the reactions were also simulated.  相似文献   

3.
The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied.The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines.The reactions were performed under mild conditions and afforded the imines in high yield(up to 99%) without any byproducts other than H2O.The highest activity was obtained over 5 wt%Ag/Al2O3 in toluene with air as oxidant.The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H2 in the gas phase.The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis.  相似文献   

4.
Branched polyethylene from ethylene as single monomer was prepared by the tandem catalyst system of {2-[2-Me C6 H4 N=Me)]2 C5H3N} FeCl2 (1) and {2,6-[1-(2,6-Me2-4-Br-C6H4N=(Me)]2C5H3N} FeCl2 (2) activated with methylaluminoxane (MAO) . The products of polymerization were characterized by DSC, GPC and ^13C-NMR. The results revealed that the copolymer produced by in situ copolymerization of ethylene was a mixture of branched polyethylene and α-olefin. The content of α-olefin in the mixture was increased with increasing the molar ratio of catalysts 1/2. The MWD paramelers of polyethylene and copolymer were 28.6 and 7.9, respectively. ^13C-NMR spectra showed that there were ethyl groups, butyl groups and long chain alkyl groups in the copolymer. The average degree of branching of such branched polyethylene was less than 5C/1000C.  相似文献   

5.
A WC-supported S2O8^2-/ZrO2(PSZ) catalyst was prepared and characterized by means of XRD, BET, FTIR and XPS. The isomerization of n-pentane over the catalyst was investigated as well. The results show that the skeletal isomerization and the crack of n-pentane proceed simultaneously on WC-supported S2O8^2-/ZrO2 catalyst. The addition of tungsten carbide showed a significant enhancement in the activity and stability of the catalyst for n-pentane isomerization. The catalyst showed evidently a better activity than S2O8^2-/ZrO2 supported by Pt and WO3. The results can be interpreted by the existence of the tungsten oxycarbide compound(WCxOy) with carbidic, oxide and acidic sites.  相似文献   

6.
The catalytic combustion of methane in a mierochannel whose surface was coated with platinum(Pt) catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.  相似文献   

7.
Nano silica was prepared from rice husk with high surface area.X-ray diffraction(XRD) pattern showed that the amorphous form of silica was produced.Chemical composition of the nano silica was estimated by X-ray fluorescence spectroscopy and CHN analysis.The nano silica was used as a support for H3PW12O40.The nano silica and nano silica supported H3PW12O40 were characterized by inductively coupled plasma,XRD,transmission electron microscopy(TEM),N2 adsorption-desorption,and Fourier transform infrared spectroscopy.TEM images of nano silica as well as the supported catalyst displayed average size of 6 and 7 nm,respectively.The catalyst showed excellent activity in some important organic reactions including Biginelli,Hantzsch,Mannich,and Claisen-Schmidt reactions with good reusability.Catalytic activity of this nano catalyst is an improvement over the commercially available silica that is used to support H3PW12O40.  相似文献   

8.
Direct conversion of cellulose into 5-hydroxymethylfurfural(HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride(Cl) ionic liquid.Our study demonstrated formation of 2-furyl hydroxymethyl ketone(FHMK),and furfural(FF) simultaneously with the formation of HMF.Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature,time,and the type of metal chloride catalyst.Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives(HMF,FHMK,and FF) from cellulose.CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF(35.6%) with less concentrations of FHMK,and FF.Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides.Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination.CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF(39.9%) with total yield(63.8%) of furans produced from the reaction.The temperature and time of the catalytic reaction played an important role in cellulose conversion,and the yields of products.Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals(5~20 min).  相似文献   

9.
阻聚剂对MMA原子转移自由基聚合的影响   总被引:2,自引:0,他引:2  
张鸿  徐冬梅  张可达 《中国化学》2005,23(7):913-917
Effect of a series of inhibitors as additives on atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with FeCl2/PPh3 as catalyst system was studied, including 2,4,6-trinitrophenol (TNP), 4-methoxyphenol (4-MP), hydroquinone (HQ) and nitrobenzene (NB). It was found that TNP was the only. efficient additive for ATRP among these inhibitors. In the presence of small amounts of TNP, the polymerization proceeded rapidly after induction period to yield the polymers with controlled molecular weights and narrow molecular weight distributions (MWD). The initiating efficiency of the modified catalyst system with TNP was increased. The mechanism was proposed and confirmed by the end group analysis of the polymer.  相似文献   

10.
The induction behavior in CO2 hydrogenation was studied by varying the reaction temperature to investigate the adaptation of the Cu/ZnO/Al2O3 catalyst to the temperature change. The results indicated that a used catalyst had a tendency to keep the last running state in new reaction conditions for MeOH formation, and that this tendency was related to the difference in Cu/Cun+ ratio caused by CO2 and CO produced at different reaction temperatures. However, the reverse water-gas shift reaction (RWGS) induced at four temperatures was completely different from that of methanol synthesis. It implied that the two so-called competitive reactions in CO2+H2, RWGS and methanol synthesis, have different active centers.  相似文献   

11.
An efficient regioselective Friedel–Crafts hydroxyalkylation of N-substituted glyoxylamide with various indoles catalyzed by Lewis acids was developed. The reactions proceeded smoothly at room temperature and the 2-hydroxy-2-(1H-indol-3-yl)-N-substituted acetamide resulted from the reactions catalyzed by FeSO_4 were synthesized in excellent yields(up to 93%). While the bisindole compounds were obtained when FeCl_3 was used as a catalyst in excellent yields(up to 92%). A possible mechanism was proposed.  相似文献   

12.
A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs)was explored.1-Butyl-3-methylimidazolium hydrogen sulphate(BMImHSO4)acting as an effective media and catalyst in aldol reactions was compared with other BAILs,with the advantages of high conversion and selectivity.The product was easily isolated and the left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency.The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.  相似文献   

13.
张志明 《高分子科学》2013,31(3):503-513
In this paper, electromagnetic poly(3,4-ethylenedioxythiophene)/γ-Fe2O3 (PEDOT/γ-Fe2O3 ) micro-bowls, 1 2 μm in diameter, were prepared by a simple environment-friendly process. In this method, the aqueous solution of cetyltrimethylammonium bromide (CTAB) instead of any organic solvent was used. FeCl3 acted as a source of Fe Ⅲ for the formation of γ-Fe2O3 and as an oxidant for the polymerization of 3,4-ethylenedioxythiophene (EDOT). The bowl-shaped morphology of PEDOT/γ-Fe2O3 composites was strongly influenced by the concentration of CTAB, FeCl2 , ammonia solution and the reaction temperature. The saturation magnetization of PEDOT/γ-Fe2O3 micro-bowls increased with the increase of FeCl2 concentration and reached 6.20 Am2 /kg at the FeCl2 concentration of 0.30 mol/L. The conductivity of the PEDOT/γ-Fe2O3 composites was in the range of 101 S/cm. The electrical and magnetic sources of PEDOT/γ-Fe2O3 micro-bowls were confirmed by SEM-EDX, TEM, XRD and XPS spectra. And the possible formation mechanism of PEDOT//γ-Fe2O3 was proposed.  相似文献   

14.
A thin PVA/FeCl3 composite fiber was prepared by using sol-gel processing and electrospinning techniques. A nanofiber of α-Fe2O3 with the diameter of 50-150 nm was obtained via high temperature calcination of the PVA/FeCl3 composite fiber. The material was characterized by infra-red (IR) spectroscopy, X-ray diffraction(XRD), and scanning electron microscopy(SEM). The results show that the fiber after the calcination at 700℃ was a pure α-Fe2O3 nanofiber.  相似文献   

15.
With the growing consumption of oil, the production of /?-xylene(PX) from renewable biomass has gained significant attention recently. This work demonstrated that cellulose, a main component in lignocellulosic biomass, was directly converted into PX over the Mg/P surface-modified zeolites. The catalysts modified by the incorporation of P2O5 and MgO into HZSM-5(HZ) promoted the isomerization of zw-/o-xylenes to p-xylene. The PX selectivity was greatly enhanced using the modified zeolites due to the deactivation of external surface and the adjustment of pore entrance. In addition, the addition of methanol to cellulose was beneficial to increase the selectivity of xylenes due to the alkylation reactions and the Diels-Alder reactions between cellulose-derived furans and methanol-derived olefins. The highest PX yield of 10.7%(molar fraction) with a high PX selectivity in xylenes(97.1%) was obtained over the 10%Mg/5%P/HZ catalyst. The reaction pathway for the formation ofp-xylene was addressed according to the study of the key reactions and the characterization of catalysts.  相似文献   

16.
The induction behavior in CO2 hydrogenation was studied by varying the reaction temperature to investigate the adaptation of the Cu/ZnO/Al2O3 catalyst to the temperature change,The results indicated that a used catalyst had a tendency to keep the last running state in new reaction conditions for MeOH formation,and that this tendency was related to the difference in Cu/Cu^n ration caused by CO2 and CO produced at different reaction temperatures,However,the reverse water-gas shift reaction (BWGS) induced at four temperatures was completely different from that of methanol synthesis,It implied that the two so-called competitive reactions in CO2 H2,RWGS and methanol synthesis,have different, active centers.  相似文献   

17.
Porous α-Fe2O3 was synthesized by a simple hydrothermal treatment of FeCl3 aqueous solution followed by a calcination process. In the synthesis of porous α-Fe2O3, no templates or pore-directing agents were used. The as-prepared porous α-Fe2O3 was further employed as a support for loading Pt nanoparticles. The gas sensing performance of the obtained porous α-Fe2O3-supported Pt to VOCs was investigated. The sensor presented a high response and fast response-recovery characteristic to several VOCs including acetone, ether, methanol, ethanol, butanol and hexanol. Meanwhile, it exhibited a much higher response than the pure α-Fe2O3 at the operating temperature of 260°C. The enhanced sensing properties may be related to the unique porous structure of the α-Fe2O3 support and the promoting effect of active Pt nanoparticles for the sensing reactions.  相似文献   

18.
A series of CuO-ZnO catalysts (with different Cu/Zn molar ratios) were prepared, and evaluated under the reaction conditions of syngas-to-dimethyl ether (DME) with three sorts of feed gas and different space velocity. The catalysts were characterized by X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The experiment results showed that the reaction conditions of syngas-to-DME process greatly affected the methanol synthesis and WGS reaction. The influence caused by Cu/Zn molar ratio was quite different on the two reactions; increasing of percentage of CO2 in feed gas was unfavorable for catalyst activity, and also inhibited both reactions: enhancement of reaction space velocity heavily influenced the performance of the catalyst, and the benefits were relatively less for methanol synthesis than for the WGS reaction.  相似文献   

19.
The catalytic activity of nanostructured low percent (1%) Co-Ni catalysts on the basis of glass fiber (GF) prepared by a"solution combustion" (SC) method was studied.The catalytic activity of the prepared samples was studied in the reaction of dry reforming of methane (DRM) with CO2.The obtained samples were characterized by a number of physico-chemical methods,including XRD,SEM,TEM,TGA and AFM.The active component was shown to be dispersed in the near-surface layer of the support as nanoparticles of 10—20 nm in size.The active component showed a Co3O4 or(Co,Ni)Co2O4 spinel structure,depending on the catalyst composition.The spinel structure of the active component interacted strongly with the carrier,providing resistance to carbonization,high catalytic activity toward DRM,and high activity and stability in oxidation reactions.  相似文献   

20.
The development of environmentally friendly solid acid catalysts is a priority task. Highly oxidized activated carbon and their ion-substituted (saline) forms are effective proton transfer catalysts in esterification, hydrolysis, and dehydration, and thus are promising candidates as solid acid cata-lysts. Computations by the ab initio method indicated the cause for the enchanced acidity of the carboxylic groups attached to the surface of highly oxidized carbon. The synthesis of phosphorilated carbon was considered, and the proton transfer reactions catalyzed by them in recent studies were analyzed. The development of an amorphous carbon acid catalyst comprising polycyclic carbonaceous (graphene) sheets with –SO3H, –COOH and phenolic type OH-groups was carried out. These new catalysts were synthesized by partial pyrolysis and subsequent sulfonation of carbohydrates, polymers, and other organic compounds. Their high catalytic activities in proton transfere reactions including the processing of bio-based raw materials was demonsrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号