首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expression has been obtained for the diffusion tensor of particles in the momentum space on the basis of the dynamics of particles motion. The general equations have been used to determine the rms momentum spread at collisions of relativistic charged particles at times shorter than the time of randomization of particles motion and at greater times when motion is completely random.  相似文献   

2.
《Physics letters. A》2020,384(28):126737
The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.  相似文献   

3.
The motional properties of rhodamine green alone and conjugated to 10-kDa dextran have been studied by fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence anisotropy (TRFA). With FCS the translational diffusion times of the fluorescent particles can be determined, which are directly proportional to the shear viscosity as shown in aqueous solutions of different sucrose concentrations. With TRFA the rotational correlation times of the fluorescent particles can be determined. TRFA experiments in the case of fluorescent dextran reveal a distinct restricted internal motion of the fluorescent probe independent of the slower overall rotation of the polysaccharide. The fast depolarization is most likely due to internal motion and not to energy transfer between different rhodamine green molecules in the same dextran, since a higher viscosity of the solvent increases the correlation time for internal motion proportionally. FCS and TRFA yield complementary information in the sense that the correlation time for overall dextran rotation can be accurately determined from the translational diffusion coefficient.  相似文献   

4.
We discuss some aspects of the intriguing problem of interplay between molecular diffusion and the geometry of the velocity field in the diffusion of test particles. By simple arguments one can understand how the diffusion coefficient can have a large enhancement from the combined effects of the noise and the drift terms in the Langevin equation ruling the motion of test particles. The same effects give rise to the superdiffusive transport observed in media with correlated random velocity fields.  相似文献   

5.
Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.  相似文献   

6.
The diffusive motion of adsorbates on crystal planes is studied by means of a lattice gas model with stochastic dynamics, in the disordered phase and at half coverage. The diffusion coefficient and the time-correlation functions measured in field-emission experiments are calculated. These correlation functions are shown to have the proper hydrodynamic power law decay at long times. It is pointed out that if experiments are done at times before the onset of the hydrodynamic regime the value of the diffusion coefficient obtained will be too small. Our results show also that correlations among the adsorbed particles persist for times longer than predicted by a hydrodynamical approximation.  相似文献   

7.
Self-motile colloidal particles: from directed propulsion to random walk   总被引:1,自引:0,他引:1  
The motion of an artificial microscale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times it has a substantial component of directed motion, with a velocity that depends on the concentration of fuel molecules. At longer times, the motion reverts to a random walk with a substantially enhanced diffusion coefficient. Our results suggest strategies for designing artificial chemotactic systems.  相似文献   

8.
We consider an oscillator with a random mass for which the particles of the surrounding medium adhere to the oscillator for some random time after the collision (Brownian motion with adhesion for a harmonically bound particle). This is another form of a stochastic oscillator, different from oscillator usually studied that is subject to a random force or having random frequency or random damping. Calculation of the first two stationary moments shows that for white multiplicative noise of week strength the second moment coincides with that of usual Brownian motion, but for symmetric dichotomous noise, the second moment may appear the same type of the “energetic” instability, which exists for white noise random frequency or damping coefficient.  相似文献   

9.
We study general aspects of active motion with fluctuations in the speed and the direction of motion in two dimensions. We consider the case in which fluctuations in the speed are not correlated to fluctuations in the direction of motion, and assume that both processes can be described by independent characteristic time scales. We show the occurrence of a complex transient that can exhibit a series of alternating regimes of motion, for two different angular dynamics which correspond to persistent and directed random walks. We also show additive corrections to the diffusion coefficient. The characteristic time scales are also exposed in the velocity autocorrelation, which is a sum of exponential forms.  相似文献   

10.
Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.  相似文献   

11.
We study the biased diffusion of particles moving in one direction under the action of a constant force in the presence of a piecewise linear random potential. Using the overdamped equation of motion, we represent the first and second moments of the particle position as inverse Laplace transforms. By applying to these transforms the ordinary and the modified Tauberian theorem, we determine the short- and long-time behavior of the mean-square displacement of particles. Our results show that while at short times the biased diffusion is always ballistic, at long times it can be either normal or anomalous. We formulate the conditions for normal and anomalous behavior and derive the laws of biased diffusion in both these cases.  相似文献   

12.
James P. Gleeson 《Physica A》2009,388(4):277-287
The motion of overdamped particles in a one-dimensional spatially-periodic potential is considered. The potential is also randomly-fluctuating in time, due to multiplicative colored noise terms, and has a deterministic tilt. Numerical simulations show two distinct parameter regimes, corresponding to free-running near-deterministic particles, and particles which are trapped in local minima of the potential with intermittent escape flights. Perturbation and asymptotic methods are developed to understand the drift velocity and diffusion coefficient in each parameter regime.  相似文献   

13.
Restrictions to molecular motion by barriers (membranes) are ubiquitous in porous media, composite materials and biological tissues. A major challenge is to characterize the microstructure of a material or an organism nondestructively using a bulk transport measurement. Here we demonstrate how the long-range structural correlations introduced by permeable membranes give rise to distinct features of transport. We consider Brownian motion restricted by randomly placed and oriented membranes (d - 1 dimensional planes in d dimensions) and focus on the disorder-averaged diffusion propagator using a scattering approach. The renormalization group solution reveals a scaling behavior of the diffusion coefficient for large times, with a characteristically slow inverse square root time dependence for any d. Its origin lies in the strong structural fluctuations introduced by the spatially extended random restrictions, representing a novel universality class of the structural disorder. Our results agree well with Monte Carlo simulations in two dimensions. They can be used to identify permeable barriers as restrictions to transport, and to quantify their permeability and surface area.  相似文献   

14.
We perform molecular dynamics simulations of Lennard–Jones particles in a canonical ensemble to study the diffusion of nanodroplets on smooth solid surfaces. Using the droplet-surface interaction to realize a hydrophilic or hydrophobic surface and calculating the mean square displacement of the center-of-mass of the nanodroplets, the random motion of nanodroplets could be characterized by shorttime subdiffusion, intermediate-time superdiffusion, and long-time normal diffusion. The short-time subdiffusive exponent increases and almost reaches unity (normal diffusion) with decreasing droplet size or enhancing hydrophobicity. The diffusion coefficient of the droplet on hydrophobic surfaces is larger than that on hydrophilic surfaces.  相似文献   

15.
16.
We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4) μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.  相似文献   

17.
The one-dimensional overdamped Brownian motion in a symmetric periodic potential modulated by external time-reversible noise is analyzed. The calculation of the effective diffusion coefficient is reduced to the mean first passage time problem. We derive general equations to calculate the effective diffusion coefficient of Brownian particles moving in arbitrary supersymmetric potential modulated by: (i) an external white Gaussian noise and (ii) a Markovian dichotomous noise. For both cases the exact expressions for the effective diffusion coefficient are derived. We obtain acceleration of diffusion in comparison with the free diffusion case for fast fluctuating potentials with arbitrary profile and for sawtooth potential in case (ii). In this case the parameter region where this effect can be observed is given. We obtain also a finite net diffusion in the absence of thermal noise. For rectangular potential the diffusion slows down, for all parameters of noise and of potential, in comparison with the case when particles diffuse freely.  相似文献   

18.
郭伟  杜鲁春  刘真真  杨海  梅冬成 《中国物理 B》2017,26(1):10502-010502
We investigate the transport of a deterministic Brownian particle theoretically, which moves in simple onedimensional, symmetric periodic potentials under the influence of both a time periodic and a static biasing force. The physical system employed contains a friction coefficient that is speed-dependent. Within the tailored parameter regime, the absolute negative mobility, in which a particle can travel in the direction opposite to a constant applied force, is observed.This behavior is robust and can be maximized at two regimes upon variation of the characteristic factor of friction coefficient. Further analysis reveals that this uphill motion is subdiffusion in terms of localization(diffusion coefficient with the form D(t) ~t~(-1) at long times). We also have observed the non-trivially anomalous subdiffusion which is significantly deviated from the localization; whereas most of the downhill motion evolves chaotically, with the normal diffusion.  相似文献   

19.
Time-resolved investigations of the expanded plasma of vacuum arc cathode spots are described, including the study of the ion charge state distribution, the random cathode spot motion, and the crater formation. It was found that the ion charge state distribution changes over a timescale on the order of hundreds of microseconds. For the random spot motion two timescales were observed: a very short spot residence time of tens of nanoseconds which gives, combined with the step width, the diffusion parameter of the random motion, and a longer timescale on the order of 100 μs during which the diffusion parameter changes. Crater formation studies by scanning electron microscopy indicate the occurrence of larger craters at the end of crater chains. The existence of a timescale much longer than the elementary times for crater formation and spot residence can be explained by local heat accumulation  相似文献   

20.
《中国物理 B》2021,30(10):100510-100510
Collective motion of active particles with polar alignment is investigated on a sphere. We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion. In the model, we added a polar alignment strength, along with Gaussian curvature, affecting particles swarm motion. We find that when the force exceeds a certain limit, the order parameter will decrease with the increase of the force. Combined with our definition of order parameter and observation of the model, the reason is that particles begin to move side by side under the influence of polar forces. In addition, the effects of velocity, rotational diffusion coefficient, and packing fraction on particle swarm motion are discussed. It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles, while the velocity has little influence on the clustering motion of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号