首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spin dynamics of NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg (FSLG) pulse sequence is investigated for a better understanding of the line-narrowing mechanism in PISEMA experiments. For the sample of oriented 15N(1,3,5,7)-labeled gramicidin A in hydrated DMPC bilayers, it is found that the spin-lattice relaxation time T(1rho)(H) in the tilted rotating frame is about five times shorter when the 1H magnetization is spin locked at the magic angle by the FSLG sequence compared to the simple Lee-Goldburg sequence. It is believed that the rapid phase alternation of the effective fields during the FSLG cycles results in averaging of the spin lock field so that the spin lock becomes less efficient. A FSLG supercycle has been suggested here to slow the phase alternation. It has been demonstrated experimentally that a modified PISEMA pulse sequence with such supercycles gives rise to about 30% line narrowing in the dipolar dimension in the PISEMA spectra compared to a standard PISEMA pulse sequence.  相似文献   

2.
A spin lock comprised of radiofrequency pulses with alternating phase, (x) (-x)(x) (-x) , is proposed as a new technique to probe microsecond time-scale dynamics. A series of R1rho measurements using different pulse duration tp allows one to determine exchange rate, kex, the product p(a)p(b)(Delta omega(ab))2 involving populations of the exchanging species, p(a) and p(b), together with chemical shift difference, (Delta omega(ab)), and the strength of the spin-lock field, B1. The interpretation is based on simple analytical expression for R1rho derived on the basis of Redfield theory. The application of the method is demonstrated for partially deuterated molecule of cyclohexane undergoing chair-to-chair interconversion at -9 degrees C.  相似文献   

3.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

4.
T1rho-weighted MRI is a novel basis for generating tissue contrast. However, it suffers from sensitivity to B1 inhomogeneity. First, excitation with a spatially varying B1 causes flip-angle artifacts and second, spin locking with an inhomogeneous B1 results in non-uniform T1rho contrast. In this study, we overcome the former complication with a specially designed spin-locking pulse sequence and we successfully obtain T1rho-weighted images with a surface coil. In this pulse sequence, the spin-lock pulse was divided into segments of equal duration and alternating phase. This "self-compensating" T1rho-preparatory pulse sequence was analyzed and the effect of an inhomogeneous B1 field was simulated using the Bloch equations. T1rho-weighted MR images of a phantom and a human knee joint in vivo were obtained on a clinical scanner with a surface coil to demonstrate the utility of the pulse sequence. The self-compensating T1rho-prepared pulses sequence resulted in substantially reduced image artifacts compared to the conventional, single-phase spin-lock pulse.  相似文献   

5.
T1rho-weighted MRI is a novel basis for generating tissue contrast. However, it suffers from sensitivity to B1 inhomogeneity. First, excitation with a spatially varying B1 causes flip-angle artifacts and second, spin locking with an inhomogeneous B1 results in non-uniform T1rho contrast. In this study, we overcome the former complication with a specially designed spin-locking pulse sequence and we successfully obtain T1rho-weighted images with a surface coil. In this pulse sequence, the spin-lock pulse was divided into segments of equal duration and alternating phase. This "self-compensating" T1rho-preparatory pulse sequence was analyzed and the effect of an inhomogeneous B1 field was simulated using the Bloch equations. T1rho-weighted MR images of a phantom and a human knee joint in vivo were obtained on a clinical scanner with a surface coil to demonstrate the utility of the pulse sequence. The self-compensating T1rho-prepared pulses sequence resulted in substantially reduced image artifacts compared to the conventional, single-phase spin-lock pulse.  相似文献   

6.
We show that the spin dynamics of any pulse sequence with off-resonant pulses is identical to that of a modified sequence with on-resonant pulses, including relaxation and diffusion effects. This equivalence applies to pulse sequences with arbitrary offset frequency deltaomega(0) which may exceed the RF field strength omega(1). Using this approach, we examine steady-state free precession (SSFP) in grossly inhomogeneous fields. We show explicitly that the magnitude of the magnetization for each mode at an offset frequency deltaomega(0) is equal to that for SSFP with on-resonance pulses of rescaled amplitude, with the same dependence on relaxation times and diffusion coefficient. The rescaling depends on offset frequency and RF field strength. The theoretical results have been tested experimentally and excellent agreement is found.  相似文献   

7.
A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a π/2 pulse, the inhomogeneous B(1) fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE π pulses function complementarily and prove most effective in removing background signals from both strong and weak B? fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the π/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B? field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate.  相似文献   

8.
We present novel Carr-Purcell-like sequences using composite pulses that exhibit improved performance in strongly inhomogeneous fields. The sequences are designed to retain the intrinsic error correction of the standard Carr-Purcell-Meiboom-Gill (CPMG) sequence. This is achieved by matching the excitation pulse with the refocusing cycle such that the initial transverse magnetization lies along the axis n(Beta) characterizing the overall rotation of the refocusing cycle. Such sequences are suitable for relaxation measurements. It is shown that in sufficiently inhomogeneous fields, the echo amplitudes have an initial transient modulation that is limited to the first few echoes and then decay with the intrinsic relaxation time of the sample. We show different examples of such sequences that are constructed from simple composite pulses. Sequences of the form 90 degrees (0)-(90 degrees (90-theta/2)-theta(180-theta/2)-90 degrees (90-theta/2))(n) with theta approximately 90 degrees and 270 degrees generate signal over a bandwidth larger than that of the conventional CPMG sequence, resulting in an improved signal-to-noise ratio in inhomogeneous fields. The new sequence 127 degrees (x,y)-(127 degrees (x)-127 degrees (-x))(n) only excites signal off-resonance with a spectrum that is bimodal, peaking at Delta omega(0)=+/-omega(1). Depending on the phase and exact timing of the first pulse, symmetric or antisymmetric excitation is obtained. We also demonstrate several new sequences with improved dependence on the RF field strength. The sequence (22.5 degrees (67.5)-90 degrees (-22.5))-(90 degrees (67.5)-45 degrees (157.5)-90 degrees (67.5))(n) has the property that the phase of the signal depends on B(1), allowing coarse B(1) imaging in a one-dimensional experiment.  相似文献   

9.
PurposeThe purpose of this study is to investigate the performance of stretched-type adiabatic spin lock pulses for homogeneous spin locking with a flexible spin lock time (TSL) setting.MethodsT values were obtained from 61 patients and five normal volunteers who were categorized using the Child–Pugh classification and scanned using each spin lock pulse type. The pulses used were the block and two kinds of hyperbolic secant (HS); HS8_10, and HS8_5. Visual scoring was categorized using a four point scale (1:Severe, 2:Moderate, 3:Mild and 4:None) to evaluate the homogeneity of the T map and the source images obtained by each spin lock pulse. Mean T values among the patient groups with different Child–Pugh classification were compared.ResultsThe visual assessment scores were 1.98 ± 1.05 for block pulse locking, 3.87 ± 0.39 for HS8_10 pulse locking, and 3.83 ± 0.45 for HS8_5 pulse locking, respectively. The scores between block pulse and HS8_10 were significantly different (p < 0.001), as were those between block pulse and HS8_5 (p < 0.001).The median T values of normal liver function, Child–Pugh A, and Child–Pugh B or C were 37.00 ms, 40.77 ms, and 42.20 ms for block pulse, 46.75 ms, 50.78 ms, and 55.60 ms for HS8_10, and 48.80 ms, 55.42 ms, and 57.80 ms for HS8_5, respectively.ConclusionThe spin locking sequence using stretched-type adiabatic pulses provides homogeneous liver T maps with reduced artifact and is necessary for a robust evaluation of liver function using T.  相似文献   

10.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

11.
We report the first observation of color-suppressed B( 0)-->D(0)pi(0), D(*0)pi(0), D0eta, and D0omega decays, and evidence for B( 0)-->D(*0)eta and D(*0)omega. The branching fractions are B(B( 0)-->D0pi(0)) = (3.1 +/- 0.4 +/- 0.5)x10(-4), B(B( 0) -->D(*0)pi(0)) = (2.7(+0.8+0.5)(-0.7-0.6))x10(-4), B(B( 0) --> D0eta) = (1.4(+0.5)(-0.4) +/- 0.3)x10(-4), B(B( 0) --> D0omega) = (1.8 +/- 0.5(+0.4)(-0.3))x10(-4), and we set 90% confidence level upper limits of B(B( 0) --> D(*0)eta)<4.6 x 10(-4) and B(B( 0)-->D(*0)omega)<7.9 x 10(-4). The analysis is based on a data sample of 21.3 fb(-1) collected at the Upsilon(4S) resonance by the Belle detector at the KEKB e(+)e(-) collider.  相似文献   

12.
The aim of the present investigation was to determine spin lock (SL) relaxation parameters for the normal brain tissues and thus, to provide basis for optimizing the imaging contrast at 0.1 T. 68 healthy volunteers were included. On-resonance spin lock relaxation time (T) and off-resonance spin lock relaxation parameters (Toff, Me/Mo), MT parameters (T1sat, Ms/Mo), and T1, T2 were determined for the cortical gray matter, and for the frontal and parietal white matters. The T for the frontal and parietal white matters ranged from 110 to 133 ms and from 122 to 155 ms with locking field strengths from 50 μT to 250 μT, respectively. Accordingly, the values for the gray matter ranged from 127 to 155 ms. With a locking field strength of 50 μT, Toff for the frontal and parietal white matters were from 114 to 217 ms and from 126 to 219 ms, and for the gray matter from 136 to 267 ms with the angle between the effective magnetic field (Beff) and the z-axis (θ) ranging from 60° to 15°, respectively. The T of the white and gray matters increased significantly with increasing locking field amplitude (p < 0.001). The Toff decreased significantly with increasing θ (p < 0.001). T and Toff with θ ≥ 30° were statistically significantly shorter in the frontal than in the parietal white matters (p < 0.05). The duration, amplitude and θ of the locking pulse provide additional parameters to optimize contrast in brain SL imaging.  相似文献   

13.
A simple two-dimensional correlation experiment that enables determination of through-bond connectivity in the solid state is described. The experiment is performed under fast magic angle spinning (MAS) conditions. After the initial pi/2 pulse, the magnetization develops freely under the MAS Hamiltonian. The t1-period is followed by a strong spin locking pulse used as mixing period. The dipolar coupling is averaged out by magic angle spinning, and the chemical shifts and r.f.-offsets are scaled by the applied spin locking field. Hence, for strong locking conditions, the isotropic J-coupling is the dominant interaction. The mixing Hamiltonian is thus identical to the well-known TOCSY-Hamiltonian, resulting in a net through-bond magnetization transfer. The mixing-time dependence of the exchange rates is investigated. Applications to crystalline P4S7 and MgP4O11 are shown.  相似文献   

14.
Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields (B0 > 3T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude omega(1) and pulse duration tau. The choices of omega(1) and tau are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle theta and off-resonance pulse duration tau. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R(1rho)/R1, the ratio of the off-resonance rotating frame relaxation rate constant R(1rho) verse the laboratory frame relaxation rate constant R(1), three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time tauR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.  相似文献   

15.
The collection of fast imaging techniques that use multiple spin-echo (MSE) sequences relies on a precise phase relationship between spin echoes and stimulated echoes that form along the radiofrequency refocusing pulse train. Failure to achieve this condition produces dark banding artifacts that result from destructive interference between signal coherence pathways. Satisfying this condition on the microsecond timescale required is technically challenging for conditions involving strong diffusion-weighted gradients, for arbitrary orientation acquisitions and at large field strengths with high-resolution acquisitions. Two clinically significant MSE sequences, fast spin echo (FSE) and balanced steady-state free precession (b-SSFP), are investigated in this work using a 4-T whole-body scanner. We developed a readout-projection-based prescan technique that ensures coherent signal formation by utilizing banding artifacts to automatically adjust gradient balance. Subsequent image acquisition using the results of this prescan permits the formation of coherent-echo images, which are robust under challenging imaging conditions. The robustness of this approach is demonstrated for FSE and b-SSFP images obtained from the knees of human volunteers. We believe that the use of this prescan calibration technique for the alignment of signal pools in MSE sequences is critical at high fields and will facilitate the implementation of high-quality clinically significant sequences such as FSE and b-SSFP.  相似文献   

16.
Laser-induced fluorescence spectrum of TiS in the 769-863 nm region has been recorded and analyzed. The TiS molecule was produced using the technique of laser vaporization/reaction with supersonic cooling. Twenty-one weak subbands have been assigned as being due to b(1)Pi-X(3)Delta, B(3)Pi(0)-X(3)Delta(1), and C(3)Delta-X(3)Delta transitions. Strong evidence shows that the b(1)Pi state is responsible for perturbing the v = 0, 1, and 2 levels of the C(3)Delta(1) subband. The molecular constants of the b(1)Pi state have been determined as follows: T(e) = 10 589.47 cm(-1), omega(e) = 542.14 cm(-1), omega(e)x(e) = 3.16 cm(-1), B(e) = 0.19568 cm(-1), and alpha(e) = 0.00085 cm(-1). The spin-orbit interaction between the b(1)Pi (v = 2 and 3) and C(3)Delta (v = 1 and 2) levels is discussed in terms of configuration interaction occurring between the b(1)Pi from the 11varsigma(1) 5pi(1) configuration and the (1)Pi from the 5pi(1) 1delta(1) configuration, and the C(3)Delta state from 12varsigma(1) 1delta(1) configuration. Copyright 2000 Academic Press.  相似文献   

17.
Methods to record chemically induced dynamic nuclear polarization (CIDNP) spectra that are virtually free from background magnetization and avoid the sensitivity loss and subtraction artifacts of difference spectroscopy have been developed. Presaturation by a string of composite pi/2 pulses, each followed by a defocussing field gradient, is analyzed, and guidelines for the optimization of pulse phases and gradient strengths are derived. Subsequent gated illumination during a grid of pi pulses with a prescribed timing causes the background magnetization to vanish at those moments of a pulse sequence when CIDNP magnetization is to be sampled or transferred. By shifting the illumination intervals within such a grid, the sign of the polarizations can be inverted without influencing the development of the background magnetization, allowing a further strong suppression of residual background by a phase cycle. Experimental examples for the application of these methods to more complex CIDNP experiments (1D-CIDNP-COSY, 1D-CIDNP-TOCSY, CIDNP-induced heteronuclear Overhauser effects, water suppression in protein CIDNP) are given.  相似文献   

18.
Significant artifacts arise in T(1rho)-weighted imaging when nutation angles suffer small deviations from their expected values. These artifacts vary with spin-locking time and amplitude, severely limiting attempts to perform quantitative imaging or measurement of T(1rho) relaxation times. A theoretical model explaining the origin of these artifacts is presented in the context of a T(1rho)-prepared fast spin-echo imaging sequence. Experimentally obtained artifacts are compared to those predicted by theory and related to B(1) inhomogeneity. Finally, a "self-compensating" spin-locking preparatory pulse cluster is presented, in which the second half of the spin-locking pulse is phase-shifted by 180 degrees. Use of this pulse sequence maintains relatively uniform signal intensity despite large variations in flip angle, greatly reducing artifacts in T(1rho)-weighted imaging.  相似文献   

19.
The radiofrequency pulses used in NMR are subject to a number of imperfections such as those caused by inhomogeneity of the radiofrequency (B(1)) field and an offset of the transmitter frequency from precise resonance. The effect of these pulse imperfections upon a refocusing pulse in a spin-echo experiment can be severe. Many of the worst effects, those that distort the phase of the spin echo, can be removed completely by selecting the echo coherence pathway using either the "Exorcycle" phase cycle or magnetic field gradients. It is then tempting to go further and try to improve the amplitude of the spin-echo signal by replacing the simple refocusing pulse with a broadband composite 180° pulse that compensates for the relevant pulse imperfection. We show here that all composite pulses with a symmetric or asymmetric phase shift scheme will reintroduce phase distortions into the spin echo, despite the selection of the echo coherence pathway. In contrast, all antisymmetric composite pulses yield no phase distortion whatsoever, both on and off resonance, and are therefore the correct symmetry of composite refocusing pulse to use. These conclusions are verified using simulations and (31)P MAS NMR spin-echo experiments performed on a microporous aluminophosphate.  相似文献   

20.
We consider a superconducting state with mixed-symmetry order parameter components, e.g., d+is or d+id(') with d(') = d(xy). We argue for the existence of a new orbital magnetization mode which corresponds to oscillations of relative phase straight phi between two components around an equilibrium value of straight phi = pi / 2. It is similar to the "clapping" mode in superfluid 3He-A. We estimate the frequency of this mode omega(0)(B,T) depending on the field and temperature for the specific case of magnetic field induced d(') = d(xy) state. This mode is tunable with a magnetic field with omega(0)(B,T) approximately BDelta(0), where Delta(0) is the magnitude of the d-wave order parameter. We also estimate the velocity s(B,T) of this mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号