首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out extensive equilibrium molecular-dynamics simulations to study quantitatively the topology of the temperature versus density phase diagrams and related interfacial phenomena in a partially miscible symmetric Lennard-Jones binary mixture. The topological features are studied as a function of miscibility parameter, alpha = epsilonAB/epsilonAA. Here epsilonAA = epsilonBB and epsilonAB stand for the parameters related to the attractive part of the intermolecular interactions for similar and dissimilar particles, respectively. When the miscibility varies in the range 0 < alpha < 1, a continuous critical line of consolute points Tcons(rho)--critical demixing transition line--appears. This line intersects the liquid-vapor coexistence curve at different positions depending on the values of alpha, yielding mainly three different topologies for the phase diagrams. These results are in qualitative agreement to those found previously for square-well and hard-core Yukawa binary mixtures. The main contributions of the present paper are (i) a quantitative analysis of the phase behavior and (ii) a detailed study of the liquid-liquid interfacial and liquid-vapor surface tensions, as function of temperature and miscibility as well as its relationship to the topological features of the phase diagrams.  相似文献   

2.
By expanding Ginoza’s mean spherical approximation (MSA) results in an inverse-temperature expansion, Henderson et al. obtained explicit results for the thermodynamic functions of a pure Yukawa fluid. We have recently published explicit results for the coefficients in an inverse-temperature expansion of the thermodynamic functions for the MSA for mixtures of Yukawa fluids. Attention is drawn to the fact that the MSA in the Ginoza formulation, does not always yield a convergent solution. The expansion used in this paper will always yield a result. In this work we present our investigations of the fluid phase diagram of Yukawa binary mixtures by considering an expansion of the MSA Helmholtz free energy up to the fifth order of the inverse-temperature expansion. The calculated fluid phase diagrams for Yukawa binary mixtures are similar to those of real mixtures.  相似文献   

3.
Second-order Barker–Henderson perturbation theory gives phase diagrams for colloid and protein solutions that include stable and metastable fluid–fluid, solid–fluid, and solid–solid phases. The potential of mean force is described by a hard-sphere interacting with a Yukawa potential. Calculations for different ranges of attraction show that, as expected, fluid–fluid coexistence becomes metastable when the potential becomes short-ranged. For a very short-ranged Yukawa potential, the phase diagram shows isostructural solid–solid equilibria with a critical point. To test more simplified models, phase diagrams from second-order Barker–Henderson perturbation theory are compared with those from the random-phase approximation for the fluid phase and the van der Waals theory for the solid phase; this comparison shows significantly different phase diagrams. Moreover, with a potential of mean force with primary and secondary minima, calculations using second-order perturbation theory identify conditions where colloidal and protein solutions can present two fluid–fluid regions, each with a critical point; however, the higher-density fluid–fluid region is likely to be metastable. The analytic calculations described here may be useful for interpretation of experimental phase diagrams and for guiding design of separation processes.  相似文献   

4.
The fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied by means of Monte Carlo computer simulations and two theoretical approximations, namely, the discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) fluids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is presented. We confirm Noro-Frenkel's extended law of scaling according to which the properties of a short-ranged fluid at a given temperature and density are independent of the detailed form of the interaction, but just depend on the value of the second virial coefficient. By mapping the HCAY and AO fluids onto an equivalent square-well fluid of appropriate range at the critical point we show that the critical temperature as a function of the effective range is independent of the interaction potential, i.e., all curves fall in a master curve. Our findings are corroborated with recent experimental data for lysozyme proteins.  相似文献   

5.
The phase equilibrium of mixtures of Yukawa and charged Yukawa particles is studied by means of Gibbs ensemble Monte Carlo (GEMC) simulation method and the mean spherical approximation (MSA). The strength of the Coulomb energy compared to that of the Yukawa attraction is characterized by a coupling constant. For low coupling constants a classical vapor--liquid phase separation appears with a good agreement between GEMC and the MSA. For high coupling constant, a phase separation between a salt poor and a salt rich phase occurs that resembles the phase equilibrium behavior of the solvent primitive model.  相似文献   

6.
Colloid-colloid interactions in charge-stabilized dispersions can to some extent be represented by the hard-core Yukawa model. The crystallization process and polymorph selection of hard-core Yukawa model are studied by means of smart Monte Carlo simulations in the region of face-centered-cubic (fcc) phase. The contact value of hard-core Yukawa potential and the volume fraction of the colloids are fixed, while the Debye screening length can be varied. In the early stage of the crystallization, the precursors with relatively ordered liquid structure have been observed. Although the crystal structure of thermodynamically stable phase is fcc, the system crystallizes into a mixture of fcc and hexagonal close-packed (hcp) structures under small Debye screening length since the colloidal particles act as effective hard spheres. In the intermediate range of Debye screening length, the system crystallizes into a mixture of fcc, hcp, and body-centered-cubic (bcc). The existence of metastable hcp and bcc structures can be interpreted as a manifestation of the Ostwald’s step rule. Until the Debye screening length is large enough, the crystal structure obtained is almost a complete fcc suggesting the system eventually reaches to a thermodynamically stable state.  相似文献   

7.
0前言最近几年低压金刚石制备研究中,出现了一类以含氮气相混合物为原料的制备方法,正逐渐被人们所重视:少量氮原子的存在(甚至是ppm级)可以显著提高金刚石薄膜的淀积速率,改善薄膜质量[1,7]。本文报道根据非平衡热力学耦合理论[10],首次计算得到了含...  相似文献   

8.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential.  相似文献   

9.
In ternary water-oil-nonionic alkyl polyglycol ether (C(i)E(j)) microemulsions, an increase in efficiency is always accompanied by the formation of a lamellar (L(alpha)) phase. The addition of an amphiphilic block copolymer to the ternary base system increases the efficiency of the microemulsion drastically while suppressing--at least partly--the formation of the L(alpha) phase. However, amphiphilic block copolymers can be used not only to suppress the formation of lyotropic liquid crystals but also for the opposite effect, namely, to induce their formation. To understand to what extent the increase in efficiency is accompanied by the formation of lyotropic liquid crystals, we studied phase diagrams of water-n-alkane-n-alkyl polyglycol ethers (C(i)E(j))-PEPX-PEOY at a constant volume fraction of oil in the water/oil mixture. Using polymers of the poly(ethylene propylene)-copoly(ethylene oxide) type, with M(PEP) = X kg mol(-1) and M(PEO) = Y kg mol(-1), we determined phase diagrams as a function of the polymer concentration, size, and symmetry. Moreover, the influence of a particular polymer mixture was studied, which turned out to be the best system if both a high efficiency and a low tendency to form an L(alpha) phase are needed.  相似文献   

10.
Using a suitable Laguerre basis set that ensures a tridiagonal matrix representation of the reference Hamiltonian, we were able to evaluate in closed form the matrix elements of the generalized Yukawa potential with a complex screening parameter. This enabled us to treat analytically both the cosine and sine-like Yukawa potentials on equal footing and compute their bound states spectrum as the eigenvalues of the associated analytical matrix representing their Hamiltonians. Finally we used a carefully designed complex scaling method to evaluate the resonance energies and compared our results satisfactorily with those obtained in the literature for the cosine-like Yukawa potential.  相似文献   

11.
The kinetics of phase transitions in three-dimensional bulk materials are commonly presented in transformation diagrams. Time-temperature transformation (TTT) and continuous-cooling-transformation (CCT) diagrams plot the time required to transform specific fractions of the material to the new phase by cooling below a transition temperature. Transformation occurs isothermally for the TTT diagrams and during continuous cooling through a range of temperatures for CCT curves. Here we present analogous transformation diagrams for two-dimensional monolayers, which collapse at the equilibrium spreading pressure (pi e) to form a three-dimensional bulk phase. Time-surface pressure-transformation (TpiT) diagrams give the time required for specific fractions of the film to collapse when surface pressure is constant, and continuous-compression-transformation diagrams give the same information when surface pressure varies continuously. The diagrams, constructed here from previously reported data for 1-palmitoyl-2-oleoyl phosphatidylcholine, provide insights into the behavior of the films. The TpiT diagrams successfully predict the existence and approximate magnitude of a threshold rate for compressing the films to high surface pressures above pi e and the approximate shape of isotherms obtained with different rates of interfacial compression. The diagrams also caution that the behavior of mixed monolayers, explained previously in terms of compositional changes, can instead result from collapse that varies with surface pressure. Finally, the similarity between the shapes of the TTT and TpiT diagrams, with the time for transformation passing through a minimum and then increasing as the systems deviate further from equilibrium, suggests that analogous mechanisms determine the behavior of both systems.  相似文献   

12.
付东  赵毅 《化学学报》2005,63(1):11-17
应用二阶微扰理论, Duh-Mier-Y-Teran状态方程和在平均球近似(mean spherical approximation, MSA)的基础上获得的直接相关函数, 建立了适用于均匀流体和非均匀流体的状态方程. 结合此状态方程, 重整化群理论(renormalization group theory, RG)和密度泛函理论(density functional theory, DFT), 分别研究了Yukawa流体的相平衡和界面张力. 结果与分子模拟数据吻合良好.  相似文献   

13.
The thermodynamic principles of conventional (T-x, P-T) phase diagrams and solubility (log ΣK-x) diagrams depicting solid-solute phase equilibria in aqueous solution are derived from a unifying point of view. It is shown that thermodynamic quantities necessary for the construction of conventional phase diagrams can be obtained from solubility measurements. The unary system calcite-aragonite and the binary system aragonite-strontianite, where solubility data are available over the whole compositional range, have been selected as examples. In the latter case, the constraint of constant composition of the solid phase leading to a metastable equilibrium with the respective solute species is an essential point in the thermodynamic derivation and was observed experimentally as well.  相似文献   

14.
We combined the finite-size scaling method with the finite element method to provide a systematic procedure for obtaining quantum critical parameters for a quantum system. We present results for the Yukawa potential solved with the finite element approach. The finite-size scaling approach was then used to find the critical parameters of the system. The critical values lambda c, alpha, and nu were found to be 0.83990345, 2.0002, and 1.002, respectively, for l = 0. These results compare well with the theoretically exact values for alpha and nu and with the best numerical estimations for lambda c. The finite element method is general and can be extended to larger systems.  相似文献   

15.
We have analyzed the currently available simulation results as well as performed some additional Monte Carlo simulation for the hard-core attractive Yukawa fluid in order to study its corresponding state behavior. We show that the values of reduced surface tension map onto the master curve and a universal equation of state can be obtained in the wide range of the attractive Yukawa tail length after a certain rescaling of the number density. Some comparisons with other nonconformal potentials are presented and discussed.  相似文献   

16.
The effect of cure temperature and modifier proportion on the miscibility of an epoxy–amine system with a thermoplastic modifier was studied by analysis of phase diagrams, morphologies, and glass transitions. Phase diagrams for the system before and during reaction were obtained from a thermodynamic analysis of phase separation using a model based on Flory–Huggins theory. Different types of morphologies were observed and analyzed in function of cure temperature and modifier proportion. The validity of the thermodynamic model was checked by comparing with observed morphologies. Two glass transitions were observed for most of the modified systems indicating that a phase separation was occurred.  相似文献   

17.
付东  李总成  李以圭  陆九芳 《化学学报》2003,61(10):1561-1566
用yukawa势能函数表达胶体颗粒之间的吸引作用。用Duh-Mier-Y-Teran状态方 程表达液相Helmholtz自由能。用一阶微扰理论、固体硬球径向分布函数解析式和 改进的胞腔模型建立固相状态方程,结合建立的状态方程和重整化群理论。研究了 胶体模型体系的液-液相平衡和液-固相平衡。研究表明,颗粒之间色散作用量程参 数的变化对胶休到本世纪末茶杯 系的相行为有特殊需要影响。所得结果与分子模 拟数据吻合良好。  相似文献   

18.
本文导出了相图中的对应关系定理在普遍情况下的六条推论。又根据分析类比找出了任一相图中的边界维数和相边界维数的普遍关系。  相似文献   

19.
The breakup of multicritical points is studied in detail within the phenomenological theory of second-order phase transitions for a thermodynamic potential invariant with respect to the C 3v (3m) group of transformations. The general conditions of this breakup are obtained and possible types of derived diagrams are plotted from a parent phase diagram containing a multicritical point. Examples of experimental phase diagrams are given that qualitatively confirm the results from theoretical and computer simulations of phase equilibria.  相似文献   

20.
The radial Slater‐type orbitals (STO) ${r^\mu }{e^{ - \alpha r}}$ can be simply obtained by repeated parametric differentiation of the Yukawa Potential $({e^{ - \alpha r}}/r)$ with respect to α. A new compact two‐range addition theorem (AdT) for the STO is herein derived by explicit parametric differentiation of the well‐known Yukawa AdT. The resulting addition formula is combined with the single‐range AdT for solid spherical harmonics $({r^l}Y_l^m(\hat r))$ to present a new AdT for three‐dimensional spherical coordinate STOs. We advance the proposition that this formula is “canonical” in the same sense that the Laplace expansion of the Coulomb potential is considered canonical. We demonstrate how this procedure can be employed for all exponential‐type orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号