首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
为研究镍掺杂对铁基催化剂上二氧化碳加氢生成C_1和C_2烃类产物的影响,应用密度泛函理论进行了相关计算.在Fe(110)和Ni-Fe(110)表面上, CH~*物种是最有利的生成CH_4和C_2H_4的C_1物种(CH_x~*),其最可能的生成路径为CO_2→HCOO~*→HCO~*→CH~*.尽管CO_2直接解离为CO~*在动力学上相较于加氢生成HCOO~*和COOH~*是较为有利的,但CO~*进一步加氢生成HCO~*在能量上是不利的,其倾向于逆向解离回到CO~*. CH~*物种可以通过三步加氢反应生成CH_4或者经C—C耦合及两步加氢生成C_2H_4.在Fe(110)表面上,对甲烷和乙烯产物选择性起决定作用的基元反应能垒之间差异仅为0.10 eV,因此两者选择性相近.在将Ni原子引入Fe(110)表面后,生成甲烷与乙烯的选择性差异变大,导致乙烯的选择性提高.计算结果表明,添加少量金属Ni能够促进CO_2转化为CH~*,及两个CH~*物种发生C—C耦合和进一步加氢转化为乙烯.  相似文献   

2.
采用量子化学密度泛函理论对CH4/CO2两步法合成乙酸反应中表面碳化物CHx (x=0~3)在Co和Pd模型表面上不同吸附活性位上的吸附能、空间构型和反应吉布斯自由能进行了系统性的比较研究. 计算结果表明, CH4/CO2两步反应在单一金属Co或Pd催化剂上在常压等温条件下不能有效进行,但在Co和Pd组成的双金属催化剂上,两步反应在常压等温下可以进行. 在Co和Pd双金属催化剂上,金属Co活化CH4生成金属碳化物CHxCo(x=0, 1)为热力学允许反应,其后CHx溢流到金属Pd上形成CHyPd (y=1~3)碳化物,最后CO2插入CHyPd生成乙酸,后两者在常压等温情况下也为热力学允许反应,并且在435 K以上可以与前者构成等温循环. 计算结果与实验结果吻合.  相似文献   

3.
To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH(4) <--> CH(3) + H and CO <--> C + O on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH(4) --> CH(3) + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH(4) <--> Ch(3) + H reaction, the dissociation barrier is reduced by approximately 0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH(3) + H on the flat surfaces and the defects. Second, for the CO <--> C + O reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH(3) + H reaction, the C + O association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.  相似文献   

4.
The electronic energy barriers of surface reactions pertaining to the mechanism of the electrooxidation of methane on Pt (111) were estimated with density functional theory calculations on a 10-atom Pt cluster, using both the B3LYP and PW91 functionals. Optimizations of initial and transition states were performed for elementary steps that involve the conversion of CH(4) to adsorbed CO at the Pt/vacuum interface. As a first approximation we do not include electrolyte effects in our model. The reactions include the dissociative chemisorption of CH(4) on Pt, dehydrogenation reactions of adsorbed intermediates (*CH(x) --> *CH(x-1) + *H and *CH(x)O --> *CH(x-1)O + *H), and oxygenation reactions of adsorbed CH(x) species (*CH(x) + *OH --> *CH(x)OH). Many pathways were investigated and it was found that the main reaction pathway is CH(4) --> *CH(3) --> *CH(2) --> *CH --> *CHOH --> *CHO --> *CO. Frequency analysis and transition-state theory were employed to show that the methane chemisorption elementary step is rate-limiting in the above mechanism. This conclusion is in agreement with published experimental electrochemical studies of methane oxidation on platinum catalysts that have shown the absence of an organic adlayer at electrode potentials that allow the oxidation of adsorbed CO. The mechanism of the electrooxidation of methane on Pt is discussed.  相似文献   

5.
《中国化学快报》2023,34(7):107809
Comprehensive fundamental understanding of CO hydrogenation reactions over Cu and ZnCu alloy surfaces is of great importance. Herein, we report a comparative DFT calculation study of elementary surface reaction network of CO hydrogenation reactions on stepped Cu(211), Cu(611), ZnCu(211) and ZnCu(611) surfaces. On ZnCu(211) and ZnCu(611) surfaces, the energetic favorable reaction path of CO hydrogenation reaction follows CO* → HCO* → H2CO* → H3CO* → CH3OH* → CH3OH with H3CO* hydrogenation as the rate-limiting step and proceeds more facilely on ZnCu(611) surface than on ZnCu(211) surface. On Cu(211) and Cu(611) surfaces, the energetic favorable reaction path of CO hydrogenation reaction follows CO* → HCO* → HCOH* → H2COH* → H3COH* → CH3* → CH4* → CH4 with H2COH* hydrogenation as the rate-limiting step and proceeds more facilely on Cu(611) than on Cu(211). The key difference of CO hydrogenation reaction on ZnCu alloy surface and Cu is that the resulting CH3OH* species desorbs to produce CH3OH on ZnCu alloy but undergoes H*-assisted decomposition to CH3* and eventually to CH4 on Cu surface. These results successfully unveil elementary surface reaction networks and structure sensitivity of Cu and ZnCu alloy-catalyzed CO hydrogenation reactions.  相似文献   

6.
Hybrid density functional calculations have been carried out using cluster models of the H/Si(100)-2 x 1 surface to investigate the mechanistic details of the initial surface reactions occurring in the atomic layer deposition of hafnium and zirconium oxides (HfO2 and ZrO2). Reaction pathways involving the metal precursors ZrCl4, Zr(CH3)4, HfCl4, and Hf(CH3)4 have been examined. Pathways leading to the formation of a Zr-Si or Hf-Si linkage show a significant sensitivity to the identity of the leaving group, with chloride loss reactions being both kinetically and thermodynamically less favorable than reactions leading to the loss of a methyl group. The energetics of the Zr(CH3)4 and Hf(CH3)4 reactions are similar with an overall exothermicity of 0.3-0.4 eV and a classical barrier height of 1.1-1.2 eV. For the reaction between H2O and the H/Si(100)-2 x 1 surface, the activation energy and overall reaction enthalpy are 1.6 and -0.8 eV, respectively. Due to contamination, trace amounts of H2O may be encountered by metal precursors, leading to the formation of minor species that can lead to unanticipated side-reaction pathways. Such gas-phase reactions between the halogenated and alkylated metal precursors and H2O are exothermic with small or no reaction barriers, allowing for the possibility of metal precursor hydroxylation before the H/Si surface is encountered. Of the contaminant surface reaction pathways, the most kinetically favorable corresponds to the surface -OH deposition. Interestingly, for the hydroxylated metal precursors, a unique reaction pathway resulting in the direct formation of Si-O-Zr and Si-O-Hf linkages has been identified and found to be the most thermodynamically stable pathway available, being exothermic by approximately 1.0 eV.  相似文献   

7.
The decomposition of methoxide (CH(3)O) on a PdZn alloy is considered to be the rate-limiting step of steam re-forming of methanol over a Pd/ZnO catalyst. Our previous density functional (DF) studies (Langmuir 2004, 20, 8068; Phys. Chem. Chem. Phys. 2004, 6, 4499) revealed only a very low propensity of defect-free flat (111) and (100) PdZn surfaces to promote C-H or C-O bond breaking of CH(3)O. Thus, we applied the same DF periodic slab-model approach to investigate these two routes of CH(3)O decomposition on PdZn(221) surfaces that expose Pd, (221)(Pd), and Zn, (221)(Zn), steps. C-H bond cleavage of CH(3)O is greatly facilitated on (221)(Pd): the calculated activation energy is dramatically reduced, to approximately 50 kJ mol(-1) from approximately 90 kJ mol(-1) on flat PdZn surfaces, increasing the rate constant by a factor of 10(8). The lower barrier is mainly due to a weaker interaction of the reactant CH(3)O and an enhanced interaction of the product CH(2)O with the substrate. The activation energy for C-O bond scission did not decrease on the (221)(Pd) step. On the (221)(Zn) step, the calculated reaction barriers of both decomposition routes are even higher than on flat surfaces, because of the stronger adsorption of CH(3)O. Steps (and other defects) appear to be crucial for methanol steam re-forming on Pd/ZnO catalyst; the stepped surface PdZn(221)(Pd) is a realistic model for studying the reactivity of this catalyst.  相似文献   

8.
Surface reactions of CH2I2 on gallium-rich GaAs(100)-(4 x 1), studied by temperature programmed desorption and X-ray photoelectron spectroscopy (XPS), show CH2I2 adsorbs dissociatively at liquid nitrogen temperatures to form surface chemisorbed CH2(ads) and I(ads) species. Controlled hydrogenation of a fraction of the CH2(ads) species in the chemisorbed layer by the background hydrogen radicals results in a surface layer comprising both CH3(ads) and CH2(ads) species. This hydrogenation step initiates a plethora of further surface reactions involving these two species and I(ads). Thermal activation leads to three sequential methylene insertions (CH2(ads)) into the CH3-surface bond to form three higher alkyl (ethyl (C2), propyl (C3), and butyl (C4)) species, which undergo beta-hydride elimination to evolve the respective higher alkene (ethene, propene, and butene). In competition with beta-hydride elimination, reductive elimination of the ethyl and propyl species with I(ads) occurs to liberate the respective alkyl iodide. Beta-hydride elimination in the alkyls, in the temperature range 420-520 K, is the more dominant pathway, and it is also the rate-limiting step for further chain propagation. The evolution of the alkyl iodides represents the only pathway for the removal of surface iodines in this study and is different from previous investigations where gallium and arsenic iodide etch products (GaI(x), AsI(x) (x = 1-3)) formed instead. The desorption of methane and methyl iodide, formed from surface CH3(ads) species at high temperatures by the reaction between surface methylenes and hydrogens eliminated from the surface C2-C4 alkyls, terminates the chain propagation. We discuss the reaction mechanisms by which the observed reaction products form and postulate reasons for the reaction pathways adopted by the surface species.  相似文献   

9.
10.
The barriers, enthalpies, and rate constants for the addition of methyl radical to the double bonds of a selection of alkene, carbonyl, and thiocarbonyl species (CH(2)=Z, CH(3)CH=Z, and (CH(3))(2)C=Z, where Z = CH(2), O, or S) and for the reverse beta-scission reactions have been investigated using high-level ab inito calculations. The results are rationalized with the aid of the curve-crossing model. The addition reactions proceed via early transition structures in all cases. The barriers for addition of methyl radical to C=C bonds are largely determined by the reaction exothermicities. Addition to the unsubstituted carbon center of C=C double bonds is favored over addition to the substituted carbon center, both kinetically (lower barriers) and thermodynamically (greater exothermicities). The barriers for addition to C=O bonds are influenced by both the reaction exothermicity and the singlet-triplet gap of the substrate. Addition to the carbon center is favored over addition to the oxygen, also both thermodynamically and kinetically. For the thiocarbonyl systems, addition to the carbon center is thermodynamically favored over addition to sulfur. However, in this case, the reaction is contrathermodynamic, addition to the sulfur center having a lower barrier due to spin density considerations. Entropic differences among corresponding addition and beta-scission reactions are relatively minor, and the differences in reaction rates are thus dominated by differences in the respective reaction barriers.  相似文献   

11.
We review systematic experimental and theoretical efforts that explored formation, structure and reactivity of PdZn catalysts for methanol steam reforming, a material recently proposed to be superior to the industrially used Cu based catalysts. Experimentally, ordered surface alloys with a Pd : Zn ratio of approximately 1 : 1 were prepared by deposition of thin Zn layers on a Pd(111) surface and characterized by photoelectron spectroscopy and low-energy electron diffraction. The valence band spectrum of the PdZn alloy resembles closely the spectrum of Cu(111), in good agreement with the calculated density of states for a PdZn alloy of 1 : 1 stoichiometry. Among the issues studied with the help of density functional calculations are surface structure and stability of PdZn alloys and effects of Zn segregation in them, and the nature of the most likely water-related surface species present under the conditions of methanol steam reforming. Furthermore, a series of elementary reactions starting with the decomposition of methoxide, CH(3)O, along both C-H and C-O bond scission channels, on various surfaces of the 1 : 1 PdZn alloy [planar (111), (100) and stepped (221)] were quantified in detail thermodynamically and kinetically in comparison with the corresponding reactions on the surfaces Pd(111) and Cu(111). The overall surface reactivity of PdZn alloy was found to be similar to that of metallic Cu. Reactive methanol adsorption was also investigated by in situ X-ray photoelectron spectroscopy for pressures between 3 x 10(-8) and 0.3 mbar.  相似文献   

12.
运用TPSR、TR-FTIR和化学捕获技术(CH3I作捕获剂),探讨了Rh/SiO2催化剂上的POM反应机理,由此提出热分解氧化机理,认为CHx(x=1~3)和CHxO(x=1~3)可能是反应物种。  相似文献   

13.
The adsorption of atomic oxygen and carbon was studied with plane wave density functional theory on four Ni surfaces, Ni(110), Ni(111), Ni(210), and Ni(531). Various adsorption sites on these surfaces are examined in order to identify the most favorable adsorption site for each atomic species. The dependence of surface bonding on adsorbate coverage is also investigated. Adsorption energies and structural information are obtained and compared with existing experimental results for Ni(110) and Ni(111). In addition, activation barriers to CO dissociation have been determined on Ni(111) and Ni(531) by locating the transition states for these processes. Our results indicate that the binding energies of C are comparatively stronger on stepped surfaces than on flat surfaces, and the energy barriers associated with CO dissociation strongly favor reactions occurring near surface steps.  相似文献   

14.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

15.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

16.
The decomposition of methanol on the Ni(111) surface has been studied with the pseudopotential method of density functional theory-generalized gradient approximation (DFT-GGA) and with the repeated slab models. The adsorption energies of possible species and the activation energy barriers of the possible elementary reactions involved are obtained in the present work. The major reaction path on Ni surfaces involves the O-H bond breaking in CH(3)OH and the further decomposition of the resulting methoxy species to CO and H via stepwise hydrogen abstractions from CH(3)O. The abstraction of hydrogen from methoxy itself is the rate-limiting step. We also confirm that the C-O and C-H bond-breaking paths, which lead to the formation of surface methyl and hydroxyl and hydroxymethyl and atom hydrogen, respectively, have higher energy barriers. Therefore, the final products are the adsorbed CO and H atom.  相似文献   

17.
夏文生  王南钦 《分子催化》1993,7(6):466-470
Rh上乙醇的生成机理,目前主要有两类.一是Ichikawa等为代表提出的“CO解离—CH_x(x=2或3)—乙酰基—乙醇”机理;另一是蔡启瑞等的“CO缔合—甲酰基(金属氧卡宾)—卡宾—乙烯酮—乙酰基—乙醇”机理.本文用Shustorovich的键级守恒—Morse势(BOC-MP)法对其进行了研究  相似文献   

18.
This paper addresses the observation of counterintuitive reactivity patterns of iron-oxo reagents, TMC(L)FeO(2+,1+); L=CH(3)CN, CF(3)CO(2) (-), N(3) (-), and SR(-), in O-transfer to phosphines versus H-abstraction from, for example, 1,4-cyclohexadiene. Experiments show that O-transfer reactivity correlates with the electrophilicity of the oxidant, but H-abstraction reactivity follows an opposite trend. DFT/B3 LYP calculations reveal that two-state reactivity (TSR) serves as a compelling rationale for these trends, whereby all reactions involve two adjacent spin-states of the iron(IV)-oxo species, triplet and quintet. The ground state triplet surface has high barriers, whereas the excited state quintet surface features lower ones. The barriers, on any single surface, are found to increase as the electrophilicity of TMC(L)FeO(2+,1+) decreases. Thus, the counterintuitive behavior of the H-abstraction reactions cannot be explained by considering the reactivity of only a single spin state but can be rationalized by a TSR model in which the reactions proceed on the two surfaces. Two TSR models are outlined: one is traditional involving a variable transmission coefficient for crossover from triplet to quintet, followed by quintet-state reactions; the other considers the net barrier as a blend of the triplet and quintet barriers. The blending coefficient (x), which estimates the triplet participation, increases as the quintet-triplet energy gap of the TMC(L)FeO(2+,1+) reagent increases, in the following order of L: CH(3)CN > CF(3)CO(2) (-) > N(3) (-) > SR(-). The calculated barriers predict the dichotomic experimental trends and the counterintuitive behavior of the H-abstraction series. The TSR approaches make a variety of testable predictions.  相似文献   

19.
We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2x1) surface and molecular-dynamics (MD) simulations of adsorbed SiH(3) radical precursor dissociation on surfaces of MD-grown a-Si:H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55 eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20 eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si:H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50 eV. The results are consistent with experimental measurements of a-Si:H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si:H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH((s)), becomes increasingly more dominant as the temperature is increased.  相似文献   

20.
The potential energy surfaces of elementary reactions of dissociative addition of one and two H2 molecules to Cr-, Mo-, or W-doped aluminide clusters MAl12 in the states of different multiplicity have been calculated by the density functional theory method. The results are compared with the previous calculations of analogous reactions involving the singlet and triplet TiAl12 cluster. The effect of the dopant nature and electronic state multiplicity on the energies and activation barriers of hydrogenation reactions is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号