首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of time-dependent quantum mechanics (TDQM) and quasiclassical trajectory (QCT) studies of the excitation function for O(3P) + H2(v = 0-3,j = 0) --> OH + H from threshold to 30 kcal/mol collision energy using benchmark potential energy surfaces [Rogers et al., J. Phys. Chem. A 104, 2308 (2000)]. For H2(v = 0) there is excellent agreement between quantum and classical results. The TDQM results show that the reactive threshold drops from 10 kcal/mol for v = 0 to 6 for v = 1, 5 for v = 2 and 4 for v = 3, suggesting a much slower increase in rate constant with vibrational excitation above v = 1 than below. For H2(v > 0), the classical results are larger than the quantum results by a factor approximately 2 near threshold, but the agreement monotonically improves until they are within approximately 10% near 30 kcal/mol collision energy. We believe these differences arise from stronger vibrational adiabaticity in the quantum dynamics, an effect examined before for this system at lower energies. We have also computed QCT OH(v',j') state-resolved cross sections and angular distributions. The QCT state-resolved OH(v') cross sections peak at the same vibrational quantum number as the H2 reagent. The OH rotational distributions are also quite hot and tend to cluster around high rotational quantum numbers. However, the dynamics seem to dictate a cutoff in the energy going into OH rotation indicating an angular momentum constraint. The state-resolved OH distributions were fit to probability functions based on conventional information theory extended to include an energy gap law for product vibrations.  相似文献   

2.
Relative state-to-state cross sections of OH molecules in the (2)Pi(32), v=0, J=32, M(J)=32, f state have been determined for transitions up to (2)Pi(32), v=0, J=112, f and (2)Pi(12), v=0, J=72, e states by collisions with HBr molecules ((1)Sigma, v=0, J<4) at 750 cm(-1) collision energy. In order to investigate features of the anisotropy of the OH-HBr potential energy surface, the steric asymmetries, which account for the effect of the OH orientation with respect to the collision partner, have been measured. A comparison with other systems previously studied shows strong similarities with the OH-HCl system.  相似文献   

3.
Doppler-free two-photon excitation spectrum and the Zeeman effect of the S1 1B1u(v21=1) <-- S0 1Ag(v=0) transition of naphthalene-d8 have been measured. 908 lines of Q(Ka)Q(J)KaKc transition of J=0-41, Ka=0-20 were assigned, and the molecular constants of the S1 1B1u(v21=1) state were determined. Perturbations were observed, and those were identified as originating from Coriolis interaction. No perturbation originating from an interaction with triplet state was observed. The Zeeman splittings from lines of a given J were observed to increase with Kc, and those of the Kc=J levels increased linearly with J. The Zeeman effects are shown to be originating from the magnetic moment of the S1 1B1u state, which is along the c axis and is induced by mixing of the S2 1B3u state to the S1 1B1u state by J-L coupling. Rotationally resolved levels were found not to be mixed with a triplet state from the Zeeman spectra. Accordingly, it is concluded that nonradiative decay of an isolated naphthalene excited to low rovibronic levels in the S1 1B1u state does not occur through the intersystem mixing. This is at variance with generally accepted understanding of the pathways of the nonradiative decay.  相似文献   

4.
We report rate coefficients for the relaxation of OH(v=1) and OD(v=1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10(-12) cm3 molecule-1 s-1) can be expressed as: for OH(v=1)+H2O between 263 and 390 K: k=(2.4+/-0.9) exp((460+/-115)/T); for OH(v=1)+D2O between 256 and 371 K: k=(0.49+/-0.16) exp((610+/-90)/T); for OD(v=1)+H2O between 251 and 371 K: k=(0.92+/-0.16) exp((485+/-48)/T); for OD(v=1)+D2O between 253 and 366 K: k=(2.57+/-0.09) exp((342+/-10)/T). Rate coefficients at (297+/-1 K) are also reported for the relaxation of OH(v=2) by D2O and the relaxation of OD(v=2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O-HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O-HO, D2O-HO, H2O-DO and D2O-DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates-assuming that relaxation proceeds via the hydrogen-bonded complexes.  相似文献   

5.
The conversions of hexahydroxo rhenium cluster complexes [Re6Q8(OH)6]4- (Q=S, Se) in aqueous solutions in a wide pH range were investigated by chemical methods and spectroscopic measurements. Dependences of the spectroscopic and excited-state properties of the solutions on pH have been studied in detail. It has been found that a pH decrease of aqueous solutions of the potassium salts K4[Re6Q8(OH)6].8H2O (Q=S, Se) results in the formation of aquahydroxo and hexaaqua cluster complexes with the general formula [Re6Q8(H2O)n(OH)6-n]n-4 that could be considered as a result of the protonation of the terminal OH- ligands in the hexahydroxo complexes. The compounds K2[Re6S8(H2O)2(OH)4].2H2O (1), [Re6S8(H2O)4(OH)2].12H2O (2), [Re6S8(H2O)6][Re6S6Br8].10H2O (3), and [Re6Se8(H2O)4(OH)2] (4) have been isolated and characterized by X-ray single-crystal diffraction and elemental analyses and infrared (IR) spectroscopy. In crystal structures of the aquahydroxo complexes, the cluster units are connected to each other by an extensive system of very strong hydrogen bonds between terminal ligands.  相似文献   

6.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

7.
The one-electron reduction of [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-) at a glassy carbon electrode was investigated using cyclic and rotating-disk-electrode voltammetry in buffered and unbuffered aqueous solutions over the pH range 3.45-7.50 with an ionic strength of approximately 0.6 M maintained. The behavior is well-described by a square-scheme mechanism P + e(-) <--> Q (E(1)(0/) = -0.275 V, k(1)(0/) = 0.008 cm s(-1), and alpha(1) = 1/2), PH(+) + e(-) <--> QH(+) (E(2)(0/) = -0.036 V, k(2)(0/) = 0.014 cm s(-1), and alpha(2) = 1/2), PH(+) <--> P + H(+) (K(P) = 3.02 x 10(-6) M), and QH(+) <--> Q + H(+) (K(Q) = 2.35 x 10(-10) M), where P, Q, PH(+), and QH(+) correspond to [alpha(2)-Fe(III)(OH)P(2)W(17)O(61)](8-), [alpha(2)-Fe(II)(OH)P(2)W(17)O(61)](9-), [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-), and [alpha(2)-Fe(II)(OH(2))P(2)W(17)O(61)](8-), respectively; E(1)(0)' and E(2)(0)' are the formal potentials, k(1)(0)' and k(2)(0)' are the formal (standard) rate constants, and K(P) and K(Q) are the acid dissociation constants for the relevant reactions. The analysis for the buffered media is based on the approach of Laviron who demonstrated that a square scheme with fully reversible protonations, reversible or quasi reversible electron transfers with the assumption that alpha(1) = alpha(2), can be well-described by the behavior of a simple redox couple, ox + e(-) <--> red, whose formal potential, E(app)(0)', and standard rate constant, k(app)(0)', are straightforwardly derived functions of pH, as are the values of E(1)(0)', k(1)(0)', E(2)(0)', k(2)(0)', and K(P) (only three of the four thermodynamic parameters in a square scheme can be specified). It was assumed that alpha(app) = 1/2, and the simulation program DigiSim was used to determine the values of E(app)(0)' and k(app)(0)', which are required to describe the cyclic voltammograms obtained in buffered media in the pH range from 3.45 to 7.52 (buffer-related reactions which effect general acid-base catalysis are included in the simulations). DigiSim simulations of cyclic voltammograms obtained in unbuffered media yielded the values of E(1)(0)' and k(1)(0)'; K(Q) was then directly computed from thermodynamic constraints. These simulations included additional reactions between the redox species and H(2)O. The value of the diffusion coefficient of the [alpha(2)-Fe(III)(OH(2))P(2)W(17)O(61)](7-), 2.92 x 10(-6) cm(2) s(-1), was determined using DigiSim simulations of voltammograms at a rotating disk electrode in buffered and unbuffered media at pH 3.45. The diffusion coefficients of all redox species were assumed to be identical. When the pH is greater than 6, instability of P (i.e., [alpha(2)-Fe(III)(OH)P(2)W(17)O(61)](8-)) led to the loss of the reactant and precluded lengthy experimentation.  相似文献   

8.
The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O++H2(v=0,j=0)-->OH++H reaction and its isotopic variants with D2 and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections.  相似文献   

9.
Reactions of OH(v = 1) with HBr, O, and CO have been studied at 295°K using a fast discharge flow apparatus: The reaction O + HBr → OH(v = 1) + Br was used as a source of OH(v = 1), and subsequent chemical reactions of the excited radical were followed using EPR spectroscopy. Rate constants for reactions (2b), (3b), and (6b) were measured as (4.5 ± 1.3) × 10?11, (10.5 ± 5.3) × 10?11, and <5 × 10?12 cm3/molec·sec, respectively. The rate constant for physical deactivation of OH(v = 1) by CO was determined as <4 × 10?13 cm3/molec·sec.  相似文献   

10.
INDO方法研究了C70R2(R=OH,CH3)4种异构体的结构和稳定性,表明1,9-C70(OH)2比7,8-C70(OH)2稳定,两者能量差为38.5kJ/mol,而7,8-C70(CH3)2比1,9-C70(CH3)2能量低23.0kJ/mol.以优化构型为基础,对C70R2(R=OH,CH3)的电子光谱进行了理论预测.  相似文献   

11.
The kinetics of OH(ν = 0) and OH(ν = 1) have been followed using pulsed photolysis of H2O or HNO3 to generate hydroxyl radicals, and time-resolved, laser-induced fluorescence to observe the rates of their subsequent removal in the presence of HCl or HBr. The experiments yield the following rate constants (cm3 molecule?1 s?1) at 298 ± 4 K: OH(ν = 0) + HCl: ko = (6.8 ± 0.25) × 10?13; OH(ν = 0) + HBr: ko = (11.2 ± 0.45) × 10?12; OH(ν = 1) + HCl: k1 = (9.7 ± 1.0) × 10?13; OH(gn = 1) + HBr; k1 = (8.1 ± 1.05) × 10?12 For OH(ν = 1), the measurements do not distinguish between loss by reaction and relaxation, and the fact that k1 > ko for HCl is tentatively attributed to relaxation, probably by near-resonant vibrational—vibrational energy transfer. Clearly, neither of these exothermic, low-activation-energy reactions is enhanced to any great extent, if at all, by vibrational excitation of the OH radical.ft]*|Present address: Battelle/Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352, USA.  相似文献   

12.
Fluorescence-dip infrared spectroscopy, an UV-IR double-resonance technique, is employed to characterize the line positions, linewidths, and corresponding lifetimes of highly predissociative rovibrational levels of the excited A (2)Sigma(+) electronic state of the OH radical. Various lines of the 4 <--2 overtone transition in the excited A (2)Sigma(+) state are observed, from which the rotational, centrifugal distortion, and spin-rotation constants for the A (2)Sigma(+) (v = 4) state are determined, along with the vibrational frequency for the overtone transition. Homogeneous linewidths of 0.23-0.31 cm(-1) full width at half maximum are extracted from the line profiles, demonstrating that the N = 0 to 7 rotational levels of the OH A (2)Sigma(+) (v = 4) state undergo rapid predissociation with lifetimes of < or =23 ps. The experimental linewidths are in near quantitative agreement with first-principles theoretical predictions.  相似文献   

13.
The analysis of the observed OH (υ = 0, 1) concentration in the laser enhanced reactions of HCl (υ = 1, 2) with O(3P) atoms demonstrates that vibrational energy in excess of the thermal activation energy barrier continues to enhance the reaction rate. This reaction also exhibits a preferential conversion of reactant vibrational excitation into product vibrational excitation.  相似文献   

14.
The collisional removal of vibrationally excited OH(upsilon=1) by N(4S) atoms is investigated. The OH radical was prepared by 193 nm photolysis of H2O2, and N(4S) atoms were generated by a microwave discharge in N2 diluted in argon. The concentrations of OH(upsilon=0 and 1) were monitored by laser-induced fluorescence as a function of the time after the photolysis laser pulse. The N(4S) concentration was determined from the OH(upsilon=0) decay rate, using the known rate constant for the OH(upsilon=0) + N(4S) --> H + NO reaction. From comparison of the OH(upsilon=0 and 1) decay rates, the ratio of the rate constant k(upsilon=1)(OH-N) for removal of OH(upsilon=1) in collisions with N(4S) and the corresponding OH(upsilon=0) rate constant, k(upsilon=0)(OH-N) was determined to be 1.61 +/- 0.42, yielding k(upsilon=1)(OH-N) = (7.6 +/- 2.1) x 10(-11) cm3 molecule(-1) s(-1), where the quoted uncertainty (95% confidence limits) includes the uncertainty in k(upsilon=0)(OH-N). Thus, the collisional removal of OH(upsilon=1) by N(4S) atoms is found to be faster than for OH(upsilon=0).  相似文献   

15.
The iron(III)-substituted tungstogermanate [Fe6(OH)3(A-alpha-GeWO34(OH)3)2]11- (1) has been synthesized and characterized by IR, elemental analysis, SQUID magnetometry, electron paramagnetic resonance (EPR), and electrochemistry. Single-crystal X-ray analysis was carried out on Cs4Na7[Fe6(OH)3(A-alpha-GeW9O34(OH)3)2] x 30H2O, which crystallizes in the monoclinic system, space group C2/m, with a = 36.981(4) A, b = 16.5759(15) A, c = 16.0678(15) A, beta = 95.311(3) degrees, and Z = 4. Polyanion 1 consists of two (A-alpha-GeW9O34) Keggin moieties linked via six Fe3+ ions, leading to a double-sandwich structure. The equivalent iron centers represent a trigonal prismatic Fe6 fragment, resulting in virtual D3h symmetry for 1. Electrochemistry studies revealed that 1 is stable in solution from pH 3 to at least pH 7. In pH = 3 media the reduction of the six Fe3+ centers was featured by a single voltammetric wave for most supporting electrolytes used. In that case, whatever the scan rate from 1000 mV x s(-1) down to 2 mV x s(-1), no splitting of the single Fe-wave of 1 was observed. The acetate medium induced a partial splitting of the wave, and this separation is enhanced with increasing pH. Remarkable efficiency of 1 in the electrocatalytic reduction of nitrite, nitric oxide, and nitrate is demonstrated. Magnetic susceptibility (chi) measurements indicate a diamagnetic (S(T) = 0) ground state, with an average J = -12 cm(-1) and g = 2.00. EPR studies confirm that the ground state is indeed diamagnetic, since the EPR signal intensity steadily decreases without any line broadening as the temperature is lowered and becomes unobservable below about 50 K. The signal is a single broad peak at all frequencies (90-370 GHz), ascribed to the thermally accessible excited states. Its g(iso) is 1.992 51, as expected for a high-spin Fe3+-containing species, and supports the chi data analysis.  相似文献   

16.
Measurement of the rate of the reaction is reported. The measurements were made in a flow tube apparatus. The result is based on data for the absolute density of OH(v = 0) obtained from laser-induced fluorescence measurements in the (0–0) band of the OH(A2Σ+X2II) system. The density of oxygen atoms was varied by changing the flow rate of NO which is consumed in the reaction N + NO → O + N2. We find that k1 (298 K) = (5.5 ± 3.0) × 106 cm3/mol sec. This result was obtained with consideration and control of the effect of reaction (2): for which vibrationally excited hydrogen is created by energy transfer in the presence of active nitrogen. It was found that the addition of N2 or CO2 effectively suppressed the excitation of H2(v = 1). Measurements of the density of H2(v = 1) were made by VUV absorption in the Lyman band system of H2. All of the reports of low-temperature measurements and some recent theoretical calculations for k1 are discussed. The present result confirms and extends the growingevidence for significant curvature in the low-temperature end of a modified Arrhenius plot of k1 (T).  相似文献   

17.
1INrnODUCTIoNlnthepreviouspapers,wehavereportedthesynthesisandcrystalstructureofseveralcrownetherpolyoxometalates"-",nowwestudythestructureofthetitlecomplexandcompareitwithsomeothercrownetherpolyoxometalatecomplexes.2EXPERmENTALToal5OmLaqueoussolutioncontaining32g(1OOmol)Na,WO#.2H,Opre-justedtopH=3.5withchloricacid,14g(4Ommol)(n-Bu)'NBrwasadded,thenwhitepowderwasformed.ThewhiteprecipitateobtainedwithafiltrationwaskeptasthenewmaterialAinnextstep.AmixtureoflgAandO.3g(O.8mmol)DB18…  相似文献   

18.
CH4+O(3P)→CH3+OH反应的准经典轨线研究   总被引:1,自引:0,他引:1  
用准经典轨线方法研究了O(3P)与CH4的反应,计算结果表明,CH4(υ=0,j=0)与O(3P)的反应在低及高的碰撞参数下都是直接反应,无短寿命的碰撞复合物生成,产物OH以向后散射为主,基本上处于振转基态.CH4(υ=1,j=1)与O(3P)的反应在低及高的碰撞参数下反应机理不一样。在低碰撞参数下是直接反应,无短寿命的碰撞复合物生成,产物OH以向后散射为主,主要处于振动基态,转动基本上是冷的,但比高碰撞参数下的热.在高的碰撞参数下则生成短寿命的碰撞复合物,产物OH以向前散射为主,表现出明显的周边动力学反应的特征,主要处于振动激发态(υ=1),但转动仍然是较冷的。  相似文献   

19.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

20.
Xu Y  Cheng L  You W 《Inorganic chemistry》2006,45(19):7705-7708
Two new germanates, Ge7O12(OH)4 (C4N3H13)(0.5)(H2O)5 (1) and Ge7O12(OH)4(H2O)6 (2) have been synthesized under hydrothermal conditions and characterized by IR spectroscopy, powder XRD, TG, and single-crystal X-ray diffraction. Compound 1 crystallizes in cubic space group P3m (No. 215) with a = b = c = 7.7119(5) A, v = 458.65(5) A(3), z = 1. Compound 2: cubic, P3m, a = b = c = 7.7653(17) A, v = 457.48(17) A(3), z = 1. Both germanates keep the same topological novel inorganic framework, which is assembled from Ge4(OH)4 cubane and chiral intertwined Ge-O double helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号