首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A technique for the calculation of the thermoelectric power in many-particle systems exhibiting hopping conduction is presented. It is shown that the combination of thermopower and conductivity data provides very useful information about the microscopic nature of the ion hopping process in solid electrolytes. There are two main qualitative features of the transport data. In most systems the heat of transport (determined from the thermopower) and the activation energy for conduction are nearly equal, and in systems exhibiting lattice gas order-disorder transitions, these parameters may change across the phase boundary. An extended polaron lattice gas model is presented which is consistent with these features of the data and which allows a determination of the relative strengths of static barrier and polaron effects on the hopping. The results of the model suggest that polaron coupling is relatively small in most materials except for those based on organic halides.  相似文献   

2.
Given the success of the polaron model based on solvation in accounting for the width of a hole polaron on an all-adenine (A) sequence on DNA, we extend the calculations to other sequences. We find excellent agreement with the free energy differences measured by Lewis et al. (J. Am. Chem. Soc. 2000, 122, 12037-12038) between a guanine (G) cation and a pair of bases, GG, or a triple of bases, GGG, in all cases surrounded by As, by treating AGGA and AGGGA as solvated polarons. There is additional support for hole polaron formation in DNA from experiments in which oxidative damage due to injected holes is investigated in sequences involving Gs and As. Theory and comparison with transport measurements on repeated sequences involving multiple thymines (Ts) or combinations such as ATs or GCs, where C is cytosine, led to the suggestion that the basic sequences in these cases must be polarons whose wave functions have substantial amplitudes on both chains in a duplex. The size of an electron polaron in DNA is predicted to be similar to that of a hole polaron, approximately 4 or 5 bases. Although experiments have shown that polaron hopping is the dominant mode of charge transport in DNA with repeated sequences such as AGGA, further investigations, particularly of temperature dependence of site energies and transfer integrals, are needed to determine to what extent hole transport takes place by polaron hopping for arbitrary DNA sequences.  相似文献   

3.
Experiments on hole transport in DNA have been interpreted as showing that a hole introduced onto a guanine (G) followed by a series of adenines (As) in a DNA duplex travels through the first three As by tunneling and then, with thermal energy, makes the transition onto the bridge of As. It has been widely believed that, once on the bridge, the hole is localized on a single A and proceeds by hopping between As. In the experiments, the holes on the A bridge diffuse, with little attenuation, until trapped by a GGG sequence. Recently, it has been discovered by Bixon and Jortner that the model of tunneling followed by hopping between As cannot account for the very weak dependence on bridge size of the relative chemical yields and the ratios of the rates for the two processes. In earlier calculations, we have shown that interaction with water results in the hole becoming a polaron spread over approximately four As. According to these calculations, the energy of the hole on the polaron is decreased so much that it is lower than that of the hole on G and even that of GGG. Estimates of energy fluctuations, due to fluctuations in the environment and conformational changes of the DNA, find them to be large enough so that GGG, and even G, can still act as hole traps, but trapping on the former is still very much more likely because of its lower energy.  相似文献   

4.
Properties of the large acoustic polarons in discrete molecular chains have been investigated within the adiabatic approximation. It turns out that practically all the polaron features are determined by the single parameter‐coupling constant which represents the ratio between the small polaron binding energy and the electron bandwidth. Three different types of stationary solutions were found corresponding to weak, intermediate, and strong coupling limits, respectively. In the weak coupling regime, that is, for the values of coupling constant exceeding the limit of the applicability of continuum approximation but lower than the critical one ( $g_C$ ), we observe symmetric bond‐centered solution corresponding to the polaron positioned in the middle between the adjacent lattice sites. When coupling constant overgrows, this critical value transition toward the site‐centered state occurs. It takes place continuously through the intermediate asymmetric state whose position gradually approaches lattice site as coupling constant increases. One of the main consequences of the lattice discreteness is the emergence of the periodic potential, Peierls‐Nabarro potential relief, through which polarons have to pass to transfer along the chain. The conditions for the polaron propagation are formulated in terms of the threshold velocity. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
It has been shown, theoretically and experimentally, that a hole or an excess electron on a DNA molecule in solution forms a delocalized wave function, a polaron. For an all-adenine (A) sequence or a mixed sequence of guanines (G's) and A's, calculations taking into account the polarization of the solution give the wave function spread over approximately four bases, which appears to be in agreement with experiment. The polaron may move by hopping or by drift. Drift can take place in a region with all the same bases, for example, A's, by the polaron dropping an A on the trailing edge and picking up an A on the leading edge. For drift that is not too rapid, the necessity of the polarization changing as the polaron moves exerts a drag on the polaron. We calculate the drag by using a model introduced earlier to describe the polaron. We find the drag to be proportional to the velocity of the polaron and to the orientational relaxation time of the water molecules. The drag is also a function of the Coulomb interactions of the fractional charges on the bases constituting the polaron, as modified by the polarization charge induced in the solution. The diffusion rate and mobility for all A polarons, calculated taking into account the drag, are 8 x 10(-5) cm(2)/s and 3 x 10(-3) cm(2)/(V s), respectively. We believe that in the experimental studies that have been carried out on hole propagation in a series of A's it was drift being observed rather than the hopping of a localized hole between adjacent A's, as was assumed to be the case.  相似文献   

6.
The vibron dynamics associated to amide-I vibrations in a three-dimensional alpha-helix is described according to a generalized Davydov model. The helix is modeled by three spines of hydrogen-bonded peptide units linked via covalent bonds. To remove the intramolecular anharmonicity of each amide-I mode and to renormalize the vibron-phonon coupling, two unitary transformations have been applied to reach the dressed anharmonic vibron point of view. It is shown that the vibron dynamics results from the competition between interspine and intraspine vibron hops and that the two kinds of hopping processes do not experience the same dressing mechanism. Therefore, at low temperature (or weak vibron-phonon coupling), the polaron behaves as an undressed vibron delocalized over all the spines whereas at biological temperature (or strong vibron-phonon coupling), the dressing effect strongly reduces the vibrational exchanges between different spines. As a result the polaron propagates along a single spine as in the one-dimensional Davydov model. Although the helix supports both acoustical and optical phonons, this feature originates in the coupling between the vibron and the acoustical phonons only. Finally, the lattice distortion which accompanies the polaron has been determined and it is shown that residues located on the excited spine are subjected to a stronger deformation than the other residues.  相似文献   

7.
Recently, it has been shown that adsorption of gases on solid surfaces often leads to repulsive forces between adsorbate molecules. In this paper, adsorption of molecules on a one-dimensional lattice is considered for repulsive interactions between adsorbate molecules. Exact adsorption isotherms are calculated and analyzed for finite and infinite chains of active sites (i.e., a one-dimensional lattice). Although the mathematical solution for the one-dimensional lattice is known for attractive and repulsive systems, the effects of intermolecular repulsions on adsorption behavior have not been studied in detail previously. Similarly, though the mathematics for the one-dimensional lattice has been solved for any arbitrary lattice length, the effect of finite size on adsorption isotherms for repulsive adsorbate interactions has never been examined. This paper shows that spatial confinement and strong attraction to active sites can cause compression of an adsorbed phase and that repulsive interactions between adsorbed molecules result in steps in the adsorption isotherms. For higher chemical potentials, the density increases until saturating at the lattice capacity. These steps in the adsorption isotherm have not been observed in previous studies of lattice systems. For small lattices, the adsorption behavior was found to be fundamentally different for even and odd values of lattice length. Lattices with an even number of lattice sites can have two steps in the adsorption isotherm, whereas systems with an odd number of sites only have a single step occurring at a coverage slightly greater than half the lattice capacity.  相似文献   

8.
To characterize the crossover from bandlike transport to hopping transport in molecular crystals, we study a microscopic model that treats electron-phonon interactions explicitly. A finite-temperature variational method combining Merrifield's transformation with Bogoliubov's theorem is developed to obtain the optimal basis for an interacting electron-phonon system, which is then used to calculate the bandlike and hopping mobilities for charge carriers. Our calculations on the one dimensional (1D) Holstein model at T=0 K and finite temperatures show that the variational basis gives results that compared favorably to other analytical methods. We also study the structures of polaron states at a broad range of parameters including different temperatures. Furthermore, we calculate the bandlike and hopping mobilities of the 1D Holstein model in different parameters and show that our theory predicts universal power-law decay at low temperatures and an almost temperature independent behavior at higher temperatures, in agreement with experimental observations. In addition, we show that as the temperature increases, hopping transport can become dominant even before the polaron state changes its character. Thus, our result indicates that the self-trapping transition studied in conventional polaron theories does not necessarily correspond to the bandlike to hopping transition in the transport properties in organic molecular crystals. Finally, a comparison of our 1D results with experiments on ultrapure naphthalene crystals suggests that the theory can describe the charge-carrier mobilities quantitatively across the whole experimental temperature range.  相似文献   

9.
It is shown that F?rster's expression for the electronic energy transfer rate can be recast in a form predicted for exciton motion that interacts strongly with molecular vibrations. Using a simple model based on the Kennard-Stepanov theory, F?rster's expression for the spectral overlap is shown to be of a thermally activated form, as obtained previously by multiphonon theory. In contrast, the high-frequency internal vibrations contribute a factor which results from tunneling through a potential barrier between potential curves in the configuration coordinate diagram. We thus show that resonance energy transfer is equivalent to phonon-assisted hopping of a trapped excitonic polaron.  相似文献   

10.
Transition metal phosphates such as LiFePO(4) have been recognized as very promising electrodes for lithium-ion batteries because of their energy storage capacity combined with electrochemical and thermal stability. A key issue in these materials is to unravel the factors governing electron and ion transport within the lattice. Lithium extraction from LiFePO(4) results in a two-phase mixture with FePO(4) that limits the power characteristics owing to the low mobility of the phase boundary. This boundary is a consequence of low solubility of the parent phases, and its mobility is impeded by slow migration of the charge carriers. In principle, these limitations could be diminished in a solid solution, Li(x)FePO(4). Here, we show that electron delocalization in the solid solution phases formed at elevated temperature is due to rapid small polaron hopping and is unrelated to consideration of the band gap. We give the first experimental evidence for a strong correlation between electron and lithium delocalization events that suggests they are coupled. Furthermore, the exquisite frequency sensitivity of M?ssbauer measurements provides direct insight into the electron hopping rate.  相似文献   

11.
《Chemical physics》1986,101(3):371-379
Intermolecular transfer of excitation energy is studied in model systems containing luminescent donor molecules (D) and acceptor molecules (A) which constitute deep energy traps. It has been assumed that the donor and acceptor molecules form a regular lattice in which the energy transfer takes place in a hopping manner. Within the limits of the model, it has further been assumed that elementary processes are responsible for the deactivation of excited donor molecules (D*). These processes are: fluorescence, internal conversion and non-radiative energy transfer D* → D and D* → A. The general considerations concern the partial and total fluorescence quantum yield of the system and the number of energy transfers before its deactivation. A more detailed analysis and calculations, leading to analytical expressions describing these quantities, have been made for linear systems. It is shown, that has approach, under the conditions where in the system only the migration of energy is observed and no other means of energy deactivation exist leads to the same value of the average number of energy transfers as was obtained earlier by Montroll and a mean relaxation time as given by Movaghar et al.  相似文献   

12.
We studied the self-assembling of linear chain molecules in insoluble monolayers due to attractive interactions. We used lattice Monte Carlo simulations in a two-dimensional system. The molecules consist of segments occupying adjacent lattice sites. The head segments are confined to move along a line whereas the chain segments can arrange in a plane above the heads. Only one interaction parameter is applied. At high densities and small interaction energy the system shows percolation behavior. At moderate and small densities it can be characterized by a monotonous cluster size distribution. Self-assembling occurs at small densities for strong attractive interactions. The corresponding cluster size distributions indicate preferred cluster sizes which depend upon density and interaction strength. With increasing density the clusters grow. The internal cluster structure depends on the cluster size and the interaction parameter. The clusters tend to minimize their total energy. Molecules at cluster margins contribute less to the cluster energy and are mainly disordered. They cause that the cluster properties strongly depend on the cluster size. Large clusters only have minimum energy if the molecules in the cluster are in stretched-out conformation. With decreasing interaction strength the clusters get disordered thereby producing less energy-minimized domain boundaries.  相似文献   

13.
A Marcus electron transfer theory coupled with an incoherent polaron hopping and charge diffusion model in combining with first‐principle quantum chemistry calculation was applied to investigating the effects of heteroatom on the intermolecular charge transfer rate for a series of heteroacene molecules. The influences of intermolecular packing and charge reorganization energy were discussed. It was found that the sulphur and nitrogen substituted heteroacenes were intrinsically hole‐transporting materials due to the reduced hole reorganization energy and the enhanced overlap between HOMOs. For the oxygen‐substituted heteroacene, it was found that both the electronic couplings and the reorganization energies for holes and electrons were comparative, indicating the application potential of ambipolar devices. Most interestingly, for the boron‐substituted heteroacenes, theoretical calculations predicted a promising electron‐transport material, which is rare for organic materials. These findings provide insights into rationally designing organic semiconductors with specific properties.  相似文献   

14.
不同边界条件下导电高分子电子结构的研究   总被引:1,自引:0,他引:1  
用一维复式晶格作为反式聚乙炔的模型 ,在周期与非周期边界条件下 ,考虑链端效应并计及电子的非近邻跳跃 ,数值计算了格点数分别等于N =10、5 0、10 0和 2 0 0时聚乙炔的能谱和态密度 .讨论了不同格点数和结构参数对态密度及带宽的影响 ,并对两种边界条件下的计算结果进行了比较 .计算结果表明 ,当格点数N <5 0时 ,两者相差较大 ,这表明系统的边界将起很大作用 ;当格点数N≥ 5 0时 ,两者相差甚微 ,这时可利用周期性边界条件来研究有限系统问题 .  相似文献   

15.
TaON and Ta3N5 are considered promising materials for photocatalytic and photoelectrochemical water splitting. In contrast, their counterpart Ta2O5 does not exhibit good photocatalytic performance. This may be explained with the different charge carrier transport mechanisms in these materials, which are not well understood yet. Herein, we investigate the charge transport properties in Ta2O5, TaON, and Ta3N5 by polaron hopping and bandlike models. First, the polaron binding energies were calculated to evaluate whether the small polaron occurs in these materials. Then we performed calculations to localize the excess carriers as small polarons using a hybrid density functional. We find that the small polaron hopping is the charge transfer mechanism in Ta2O5, whereas our calculations indicate that this mechanism may not occur in TaON and Ta3N5. We also investigated the bandlike model mechanism by calculating the charge carrier mobility of these materials using the effective mass approximation, but the calculated mobility is not consistent with experimental results. This study is a first step towards understanding charge transport in oxynitrides and nitrides and furthermore establishes a simple rule to determine whether a small polaron occurs in a material.  相似文献   

16.
Relatively little is known about structural transformations of very small metal clusters that result from the adsorption of molecules. Here, the ligand-induced structural transformation of Ag(5)(+)(g) by 1,4-cyclohexadiene, which is capable of binding metal clusters as a bidentate ligand, is investigated using equilibrium mass spectrometry experiments and theory. Based on the measured sequential ligand binding free energies of Ag(n)(+)(cyclohexene)(m) and Ag(n)(+)(1,4-cyclohexadiene)(m) (n = 3 and 5; m up to 3), it is found that Ag(5)(+)(1,4-cyclohexadiene) is a particularly stable cluster relative to the other ion-molecule association complexes investigated. These results together with those from electronic structure calculations suggest that upon addition of 1,4-cyclohexadiene to Ag(5)(+), the metal cluster core undergoes a structural transformation from a "bowtie" structure(s), in which two Ag(2) units are bridged side-on by a central Ag atom, into a bidentate Ag(5)(+)(1,4-cyclohexadiene) structure that resembles a "razorback" arrangement of the five Ag atoms. These results raise the prospect of using multidentate ligands to transform larger ionic silver clusters from relatively compact 3D geometries into 2D elongated "razorback" nanowires. However, results from electronic structure calculations for clusters in which the razorback nanowire structural motif is propagated to larger sizes (up to Ag(9)(+)) indicate that the energy required to form such templated structures becomes increasingly unfavourable with increasing size. By calculating the vertical and adiabatic ligand binding energies, the competing effects that contribute to the energy required to form such structures, such as the metal cluster reorganization energy, can be quantified. These results indicate that the tendency for metal clusters to form compact shapes dominates other effects that contribute to the energy for forming templated nanowire structures, and this effect dramatically increases with increasing cluster size.  相似文献   

17.
La1-xCaxCrO3连接材料的研制   总被引:7,自引:1,他引:6  
用溶胶-凝胶法制备了单相性和均匀性好的La1-xCaxCrO3系列材料,X射线衍射分析表明,当0≤x≤0.5时样品具有畸变的正交钙钛矿结构。XPS测定确定了样品中存在Cr离子从Cr^3+变到Cr^6+的变价现象,随着x的增加样品中Cr^6+的含量增加。  相似文献   

18.
The reaction of methylviologen iodide with crystalline V2O5 in the molar ratio of 1 to 3.8 at 100 degrees C in water led to the formation of (MV)0.25V2O5 in quantitative yield. The structure of this organic-inorganic multilayered hybrid compound was determined by single-crystal X-ray crystallography. Strong van der Waals interactions were found between the electron-deficient aromatic organic molecules and the inorganic layers. In the solid state, the compound is a semiconductor due to small polaron hopping and shows novel reversible alkali-ion intercalation/deintercalation via electrochemistry.  相似文献   

19.
Our current understanding of ion permeation through the selectivity filter of the KcsA potassium channel is based on the concept of a multi-ion transport mechanism. The details of this concerted movement, however, are not well understood. In the present paper we report on molecular dynamics simulations which provides new insights. It is shown that ion translocation is based on the collective hopping of ions and water molecules which is mediated by the flexible charged carbonyl groups lining the backbone of the pore. In particular, there is strong evidence for pairwise translocations where one ion and one water molecule form a bound state. We suggest a physical explanation of the observed phenomena employing a simple lattice model. It is argued that the water molecules can act as rectifiers during the hopping of ion-water pairs.  相似文献   

20.
An ultralocal limit of the microscopic single particle barrier hopping theory of glassy dynamics is proposed which allows explicit analytic expressions for the characteristic length scales, energy scales, and nonequilibrium free energy to be derived. All properties are shown to be controlled by a single coupling constant determined by the fluid density and contact value of the radial distribution function. This parameter quantifies an effective mean square force exerted on a tagged particle due to collisions with its surroundings. The analysis suggests a conceptual basis for previous surprising findings of multiple inter-relationships between characteristics of the transient localized state, the early stages of cage escape, non-Gaussian or dynamic heterogeneity effects, and the barrier hopping process that defines the alpha relaxation event. The underlying physical picture is also relevant to fluids of nonspherical molecules and sticky colloidal suspensions. The possibility of a unified view of liquid dynamics is suggested spanning the range from dense gases to the zero mobility jammed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号