首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of vibrational excitation on the photodissociation cross section of ozone in the Hartley continuum is examined. The calculations make use of newly computed potential energy and transition dipole moment surfaces. The initial vibrational states of the ozone are computed using grid based techniques and the first few ab initio computed vibrational energy level spacings agree to within 10 cm(-1) with experimental values. The computed total absorption cross sections arising from different initial vibrational states of ozone are discussed in the light of the nature of the transition dipole moment surface. The computed cross section for excitation from the ground vibrational-rotational state is in good agreement with the experimentally measured cross section. Excitation of the asymmetric stretching vibration of ozone has a marked effect on both the form and magnitude of the photodissociation cross section. The velocity distributions of highly reactive O(1D) atoms arising from the photodissociation process in different wavelength ranges is also presented. The results show that the O(1D) atoms travel with a most probable translational velocity of 2.030 km s(-1) corresponding to a translational energy of 0.342 eV or 33.0 kJ mol(-1).  相似文献   

2.
A set of photodissociation experiments and simulations of hydrogen iodide (HI) on Arn clusters, with an average size n = 139, has been carried out for different laser polarizations. The doped clusters are prepared by a pick-up process. The HI molecule is then photodissociated by a UV laser pulse and the outgoing H fragment is ionized by resonance enhanced multiphoton ionization in a (2 + 1) excitation scheme within the same laser pulse at the wavelength of 243 nm. The measured time-of-flight spectra are transformed into hydrogen kinetic energy distributions. They exhibit a strong fraction of caged H atoms at zero-kinetic energy and peaks at the unperturbed cage exit for both spin-orbit channels nearly independent of the polarization. At this dissociation wavelength, the bare HI molecule exhibits a strict state separation, with a parallel transition to the spin-orbit excited state and perpendicular transitions to the ground state. The experimental results have been reproduced using molecular simulation techniques. Classical molecular dynamics was used to estimate the HI dopant distribution after the pick-up procedure. Subsequently, quasi-classical molecular dynamics (Wigner trajectories approach) has been applied for the photodissociation dynamics. The following main results have been obtained: (i) The HI dopant lands on the surface of the argon cluster during the pick-up process, (ii) zero-point energy plays a dominant role for the hydrogen orientation in the ground state of HI-Arn surface clusters, qualitatively changing the result of the photodissociation experiment upon increasing the number of argon atoms, and, finally, (iii) the scattering of hydrogen atoms from the cage which originate from different dissociation states seriously affects the experimentally measured kinetic energy distributions.  相似文献   

3.
The present review focused on selected, recent experimental progress of photodissociation dynamics of small molecules covering the vacuum ultraviolet (VUV) range from 6 eV to20 eV. These advancements come about due to the available laser based VUV light sources along with the developments of advanced experimental techniques, including the velocitymap imaging (VMI), H-atom Rydberg tagging time-of-flight (HRTOF) techniques, as well as the two-color tunable VUV-VUV laser pump-probe detection method. The applications of these experimental techniques have allowed VUV photodissociation studies of many diatomic and triatomic molecules to quantum state-to-state in detail. To highlight the recent accomplishments, we have summarized the results on several important molecular species, including H2 (D2, HD), CO, N2, NO, O2, H2O (D2O, HOD), CO2, and N2O. The detailed VUV photodissociation studies of these molecules are of astrochemical and atmospheric relevance. Since molecular photodissociation initiated by VUV excitation is complex and is often governed by multiple electronic potential energy surfaces, the unraveling of the complex dissociation dynamics requires state-to-state cross section measurements. The newly constructed Dalian Coherent Light Source (DCLS), which is capable of generating coherent VUV radiation with unprecedented brightness in the range of 50-150 nm, promises to propel the photodissociation experiment to the next level.  相似文献   

4.
Comparing the recoil energy distributions of the fragments from one-photon dissociation of phenol-d(5) with those from vibrationally mediated photodissociation shows that initial vibrational excitation strongly influences the disposal of energy into relative translation. The measurements use velocity map ion imaging to detect the H-atom fragments and determine the distribution of recoil energies. Dissociation of phenol-d(5) molecules with an initially excited O-H stretching vibration produces significantly more fragments with low recoil energies than does one-photon dissociation at the same total energy. The difference appears to come from the increased probability of adiabatic dissociation in which a vibrationally excited molecule passes around the conical intersection between the dissociative state and the ground state to produce electronically excited phenoxyl-d(5) radicals. The additional energy deposited in electronic excitation of the radical reduces the energy available for relative translation.  相似文献   

5.
We describe the experimental methods used in carrying out high resolution infrared spectroscopy of molecular beams using bolometric thermal detection. The main applications of this technique are also described and include: studies on molecular internal vibrational relaxation, radiationless transition after “visible” excitation, photodissociation spectroscopy of van der Waals molecules, the study of coherent excitation of molecules in the infrared, multiphoton infrared spectroscopy, overtone spectroscopy and the study of large molecular clusters.  相似文献   

6.
The effect of the excitation energy on the nonadiabatic photodissociation dynamics of (HI)2 is explored in this work. A wave packet model is applied that simulates the photodissociation process starting from the I*-HI complex left behind after dissociation of the first HI moiety within (HI)2. The probability and product fragment state distributions of the different photodissociation pathways are analyzed in a wide range of excitation energies of the I*-HI absorption spectrum. It is found that the probability of electronically nonadiabatic transitions increases substantially (by a factor larger than two) in the range of excitation energies analyzed. This increase is due to an enhancement of the intensity of the spin-rotation coupling responsible for the nonadiabatic transitions with increasing excitation energy. A remarkably high fraction of bound, highly excited I2 photoproducts, slowly decreasing as the excitation energy increases, is also found over the range of energies studied. The I2 product state distributions show manifestations of rotational interference effects and also of rotational cooling in the case of the I2 state distributions produced upon nonadiabatic transitions. Such effects become more pronounced with increasing energy. Experimental implications of these findings are discussed.  相似文献   

7.
We present a joint experimental and theoretical investigation of the electronic excitation spectra of the tryptophan-silver complex. The photodissociation spectrum of gas-phase [Trp-Ag]+ was measured from 215 to 330 nm using a quadrupole ion trap coupled to an optical parametric-oscillator laser. The calculated time-dependent density functional theory (TD-DFT) absorption spectra for different prototypes of structures are presented. Low-energy transitions that are experimentally observed are only calculated for the charge-solvation (CS) structures. These transitions are a signature of the metal-pi interaction in [Trp-Ag]+. The recorded spectrum is compared to a Boltzmann average of the absorption spectrum obtained from direct molecular dynamics (MD) simulations involving simultaneous transitions to excited states based on semiempirical configuration interaction (CI) calculations. The results demonstrate that charge transfer can be photoinduced from the indole ring to the silver atom.  相似文献   

8.
Quasiclassical trajectory calculations are reported to investigate the effects of rotational excitation of formaldehyde on the branching ratios of the fragmentation products, H2+CO and H+HCO. The results of tens of thousands of trajectories show that increased rotational excitation causes suppression of the radical channel and enhancement of the molecular channel. Decomposing the molecular channel into "direct" and "roaming" channels shows that increased rotation switches from suppressing to enhancing the roaming products across our chosen energy range. However, decomposition into these pathways is difficult because the difference between them does not appear to have a distinct boundary. A vector correlation investigation of the CO rotation shows different characteristics in the roaming versus direct channels and this difference is a potentially useful signature of the roaming mechanism, as first speculated by Kable and Houston in their experimental study of photodissociation of acetaldehyde [P. L. Houston and S. H. Kable, Proc. Nat. Acad. Sci. 103, 16079 (2006)].  相似文献   

9.
Multireference spin-orbit configuration interaction calculations of transition moments from the X A1 ground state to the 3Q0+, 3Q1, and 1Q excited states responsible for the A absorption band of CH3I are reported and employed for an analysis of the photofragmentation in this system. Contrary to what is usually assumed, the 3Q0+(A1), 3Q1(E), and 1Q(E)<--X A1 transition moments are found to be strongly dependent on the C-I fragmentation coordinate. The sign of this dependence is opposite for the parallel and perpendicular transitions, which opens an opportunity for vibrational state control of the photodissociation product yields. The computed absorption intensity distribution and the I* quantum yield as a function of excitation energy are analyzed in comparison with existing experimental data, and good agreement between theory and experiment is found. It is predicted that significantly higher I* quantum yield values (>0.9) may be achieved when vibrationally hot CH3I molecules are excited in the appropriate spectral range. It is shown that vibrational state control of the I*/I branching ratio in the alkyl (hydrogen) iodide photodissociation has an electronic rather than a dynamic nature: Due to a different electron density distribution at various molecular geometries, one achieves a more efficient excitation of a particular fragmentation channel rather than influences the dynamics of the decay process.  相似文献   

10.
We investigated the photodissociation mechanism of N,N-dimethylnitrosamine (CH(3))(2)NNO (DMN) by ab intio quantum chemical methods. Inspired by an earlier study we calculated two-dimensional potential energy surfaces of the S(1) state of DMN in its planar and pyramidal conformations. While the planar molecular geometry appears to possess no direct dissociation channel, the pyramidal configuration is dissociative yielding the products NO + (CH(3))(2)N. Using wave packet dynamics on the planar S(1) potential energy surface the experimental absorption spectrum was well reproduced which gives indirect but strong support for the nondissociative nature of this surface. The transition from the planar to the pyramidal conformation of DMN was then investigated by an ab initio molecular dynamics method which revealed the time evolution of the geometrical parameters of the molecule up to the dissociation of the N-N bond. This occurs about 90 fs after photon excitation. The calculated minimum energy path along the N-N coordinate and the structural changes of the molecule along this coordinate provided a detailed picture of this indirect dissociation or, more specific, predissociation process via conformational change.  相似文献   

11.
The investigation of unimolecular reactions with small rate constants is difficult owing to competing processes (inelastic collisions and bimolecular reactions) and the diffusion of reactant and product molecules out of the detection volume. For this reason, a new experimental approach for the measurement of specific rate constants in a molecular beam experiment has been exploited; instead of monitoring the temporal change of intensity as in a cell experiment, we monitor the spatial change along the molecular beam axis after laser excitation. For a given particle velocity the flight path between excitation and detection region defines the reaction time. By varying the distance the specific rate constant can be determined directly both from the decrease in the number density of reactant molecules as well as from the increase in product molecules. As a model system, the laser-induced (λ = 193 nm) photodissociation of mesitylene (trimethylbenzene) is studied. Previous experiments on the specific rate constant of mesitylene at this excitation energy differ between each other by about a factor of ten. By combining the new results with measurements at higher excitation energies, rate constants over a range of two orders of magnitude are now available for this reaction. The differences between the various experimental results are discussed within the framework of a statistical theory.  相似文献   

12.
The cationic and anionic fragmentation of dichloromethane (CH2Cl2) molecule have been investigated in the energy range of the Cl K shell by using synchrotron radiation, ion yield spectroscopy, and electron-ion coincidence spectroscopy. Total and partial ion-yield and mass spectra have been recorded as a function of the photon energy. We were able to identify several singly and multiply charged cationic fragments and the following anionic species: H-; C-; Cl-. The present results provide the first experimental report of negative ion formation from a molecule excited at the Cl 1s edge. In addition, our electron-ion coincidence data provide strong evidence of the preservation of molecular alignment for the photodissociation of CH2Cl2 after deep core-electron resonant excitation.  相似文献   

13.
A single-frequency laser is used to excite Na2 molecules to the electronic B state. Besides the molecular fluorescence also atomic Na resonance radiation is observed. This is caused by: collisional transfer of electronic excitation from a Na2(B) molecule to a Na atom, collisional dissociation of Na2(B) molecules and photodissociation of Na2 from very high vibration—rotation (v. J) levels of the ground state. We show how the contributions of these processes can be separated experimentally and characterized quantitativily over a wide range of temperatures, using a free-jet expansion. Illustrative results are given for one laser frequency (i.e. one molecular transition). Effective collision cross sections for excitation transfer and for collisional dissociation are given. The probability of photodissociation is compared to the probability of the discrete (B ← X) transition. The relaxation of the number of molecules in high (v. J) levels in a free jet is obtained.  相似文献   

14.
The dynamics of the 248 nm photodissociation of the CCl(2) molecule have been investigated in a molecular beam experiment. The CCl(2) parent molecule was generated in a molecular beam by pyrolysis of CHCl(3), and both CCl(2) and the CCl photofragment were detected by laser fluorescence excitation. The 248 nm attenuation cross sections was estimated from the reduction of the CCl(2) signal as a function of the photolysis laser fluence. The internal state distribution of the CCl photofragment was derived from analysis of laser fluorescence excitation spectra in the A (2)Delta- X (2)Pi band system. The CCl(X (2)Pi, nu = 0) rotational state distribution was found to be bimodal, with maximum populations at N approximately 10 and 85, and was dependent upon the source backing pressure, and hence upon the internal state distribution of the CCl(2) precursor. The 248 nm photodissociation dynamics appears to involve two separate channels, namely nearly impulsive rotational energy release and predissociation with little rotational energy imparted to the CCl fragment.  相似文献   

15.
Exciton absorption spectrum of optically excited linear molecular aggregate is theoretically investigated. The sum rules for the integral intensity of the absorption spectrum are derived. The dipole moments of the optical transitions from the one-exciton states to the two-exciton states are presented. The results obtained indicate an energy increase of the exciton transition after a single excitation of the aggregate. It accounts for the observed short-wavelength shift of the J-band of the pseudoisocyanine (PIC) J-aggregates after their optical excitation. The comparison of the experimental energy of the shift with its theoretical evaluation allows to estimate the number of monomers forming a typical PIC J-aggregate in the solutionN ?20–30.  相似文献   

16.
The dynamics of the 193 nm photodissociation of the CCl2 molecule have been investigated in a molecular beam experiment. The CCl2 parent molecule was generated in a molecular beam by pyrolysis of CHCl3, and both CCl2 and the CCl photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section was estimated from the reduction of the CCl2 signal as a function of the photolysis laser fluence. The internal state distribution of the CCl photofragment was derived from analysis of laser fluorescence excitation spectra in the A 2Delta-X 2Pi band system. Most of the energy available to the CCl(X 2Pi)+Cl fragments appears as translational energy. The CCl fragment rotational energy is much less than predicted in an impulsive model. The excited electronic state appears to dissociate indirectly, through coupling with a repulsive state arising from the ground-state CCl(X 2Pi)+Cl asymptote. The identity of the initially excited electronic state is discussed on the basis of what is known about the CCl2 electronic states.  相似文献   

17.
The photodissociation of s-tetrazine (ST) and its dimethyl derivative (DMST) has been investigated in hexane solutions at room temperature and in argon matrices and organic molecular crystals at cryogenic temperatures. Contrary to what has generally been assumed, only ST photodissociates upon excitation into its lowest excited singlet state at room temperature and in the rare gas matrix. Both ST and DMST in molecular crystal hosts exhibit a quadratic dependence of photodissociation on exciting light intensity. This we consider to be evidence of a sequential two photon photodissociation process.  相似文献   

18.
Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.  相似文献   

19.
We have investigated the photodynamics of phenol molecules in clusters. Possible reaction pathways following the photoexcitation of hydrogen-bonded phenol clusters have been identified theoretically using ab initio calculations. Experimentally we have studied the phenol molecules and clusters of various size distributions in a molecular beam apparatus. In particular, we have measured the H-fragment kinetic energy distributions after the excitation with 243 nm and 193 nm laser radiation. At 243 nm the KED spectra did not show any significant difference between the photodissociation of isolated molecules and phenol in larger clusters, while at 193 nm the contribution of the fast H-fragments is significantly suppressed in clusters with respect to the bare phenol molecule. We have interpreted the experimental results within the framework of the suggested reaction pathways.  相似文献   

20.
The photochemistry of aliphatic disulfides is presented. The photolysis products are photoionized with coherent vacuum ultraviolet radiation and analyzed by time-of-flight mass spectrometry. With 248-nm excitation, the predominant dissociation pathway is S—S bond cleavage. With 193-nm excitation, S—S bond cleavage, C—S bond cleavage, and molecular rearrangements are all observed as primary processes. The branching ratio for S—S bond cleavage relative to C—S bond cleavage is typically 1–2 orders of magnitude greater at 248 run than 193 run. This wavelength dependence cannot be explained readily by photodissociation from the ground electronic state. The ground state S—S bond energy, ~ 280 kJ/mol, is much larger than the C—S bond energy, ~ 235 kJ/mol. If dissociation occurred from the ground state, higher wavelength radiation would be expected to favor the lower energy process, but the opposite effect is observed. Thus, excited state photochemistry is indicated. These results are discussed with respect to the differences between low and high energy collision-induced dissociation of peptides that contain disulfide linkages and to the possibility of achieving bond-selective photodissociation of such ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号