首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated coconut carbon constitutes the more widely used sorbent for preconcentration of volatile organic compounds in sampling workplace air. Water vapour is always present in the air and its adsorption on the activated carbon surface is a serious drawback, mainly when sampling polar organic compounds, such as ketones. In this case, the recovery of the compounds diminishes; moreover, ketones can be decomposed during storage. Synthetic carbons contain less inorganic impurities and have a lower capacity for water adsorption than coconut charcoal. The aim of this work was to evaluate the storage stability of various ketones (acetone, 2-butanone, 4-methyl-2-pentanone and cyclohexanone) on different activated carbons and to study the effect of adsorbed water vapour under different storage conditions. The effect of storage temperature on extraction efficiencies was significant for each ketone in all the studied sorbents. Recovery was higher when samples were stored at 4 degrees C. The results obtained for storage stability of the studied ketones showed that the performance of synthetic carbons was better than for the coconut charcoals. The water adsorption and the ash content of the carbons can be a measure of the reactive sites that may chemisorb ketones or catalize their decomposition. Anasorb 747 showed good ketone stability at least for 7 days, except for cyclohexanone. After 30-days storage, the stability of the studied ketones was excellent on Carboxen 564. This sorbent had a nearly negligible ash content and the adsorbed water was much lower than for the other sorbents tested.  相似文献   

2.
Methodology for personal occupational exposure assessment of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by active combined aerosol and vapor sampling at 1.5L/min is presented. Determination of the organophosphates was performed by gas chromatography-mass spectrometry. Combinations of adsorbents (Anasorb 747, Anasorb CSC, Chromosorb 106, XAD-2 and silica gel) with an upstream cassette with glass fiber or PTFE filters and different desorption/extraction solvents (CS(2), CS(2)-dimethylformamide (50:1, v/v), toluene, dichloromethane, methyl-t-butyl ether and methanol) have been evaluated for optimized combined vapor and aerosol air sampling of the organophosphates tri-isobutyl, tri-n-butyl, triphenyl, tri-o-cresyl, tri-m-cresyl and tri-p-cresyl phosphates. The combination of Chromosorb 106 and 37 mm filter cassette with glass fiber filter and dichloromethane as desorption/extraction solvent was the best combination for mixed phase air sampling of the organophosphates originating from hydraulic fluids. The triaryl phosphates were recovered solely from the filter, while the trialkyl phosphates were recovered from both the filter and the adsorbent. The total sampling efficiency on the combined sampler was in the range 92-101% for the studied organophosphates based on spiking experiments followed by pulling air through the sampler. Recoveries after 28 days storage were 98-102% and 99-101% when stored at 5 and -20 degrees C, respectively. The methodology was further evaluated in an exposure chamber with generated oil aerosol atmospheres with both synthetic and mineral base oils with added organophosphates in various concentrations, yielding total sampling efficiencies in close comparison to the spiking experiments. The applicability of the method was demonstrated by exposure measurements in a mechanical workshop where system suitability tests are performed on different aircraft components in a test bench, displaying tricresyl phosphate air concentrations of 0.024 and 0.28 mg/m(3), as well as during aircraft maintenance displaying tri-n-butyl phosphate air concentrations of 0.061 and 0.072 mg/m(3).  相似文献   

3.
23种挥发性有机化合物在3种吸附剂上漏出容量的测定评价   总被引:4,自引:0,他引:4  
采用吸附热解吸-气相色谱-质谱法对23种挥发性有机化合物Chromosorb 106、Tenax TA、Tenax TG等3种吸附剂上漏出容量进行了测定。根据实验结果确定了不同的化合物应选择不同的吸附剂及相应的采样体积。结果表明,Chromosorb 106可较好地吸附低沸点的挥发性有机化合物,Tenax TA、Tenax TG均可用于沸点较高的挥发笥有机化合物吸附,这对测定大气中的有机化合物含量采样有一定的参考价值。  相似文献   

4.
The storage stability of the occupationally frequently occurring compounds, methylethylketone, methylisobutylketone, benzene, toluene, tetrachloroethylene, n-butylacetate, -pinene, β-pinene, limonene and n-decane, has been investigated on the adsorbents Tenax TA, Chromosorb 106 and Carbotrap using thermally desorbable tube type samplers, commonly utilized in ambient and workroom atmospheric measurements. Fifty and 500 ng of each compound were loaded on the various adsorbents tubes, stored at both ambient (20 °C) and refrigerated (4 °C) temperatures and analysed by means of thermal gas chromatography with mass spectrometric detection on days 0, 7, 14 and 28 after exposure. A 90% storage recovery was chosen as acceptance criteria for storage stability, and statistical testing by Student's t-test, analysis of variance and Bonferroni post hoc tests were employed to investigate the effect of the categorical variables storage time, storage temperature and analyte loading on the different adsorbents. Chromosorb 106 showed the overall best behaviour with recoveries of 90% or better for all analytes during the 28-day test period. Tenax TA and Carbotrap yielded lower recoveries and were more influenced by variations in storage time, storage temperature and analyte loading. Refrigerated temperatures were best avoided for storage on Tenax TA, but may increase the recovery of some compounds on Carbotrap (e.g. n-butylacetate). The blank build-up on the adsorbents was also investigated, and Carbotrap and Tenax TA showed no signs of artefact development over time. Chromosorb 106, however, contained inherently more artefacts that build up over time, which in spite of the excellent storage capability, may limit its use in field studies where long storage times are normal.  相似文献   

5.
This paper reports the results of a study carried out with solid sorbents in order to establish the optimum procedure for sampling and determination of diphenylamine (DPA), the most widely used post-harvest chemical in apples, in the indoor air of apple storage buildings. Different sorbents (Amberlite XAD-2, Amberlite XAD-4, Supelpak 2, Florisil, and the octadecyl silica bonded sorbent, C-18) were evaluated for their capacity to efficiently retain DPA under different air sampling and storage conditions, whereas a desorption study of all sorbents tested was also performed to optimise a simple extraction procedure using low volumes of organic solvents. In general all sorbents produced acceptable results for DPA air sampling whereas DPA was recovered easily by the use of low volumes of both ethyl acetate and acetone from all sorbents studied thus making DPA a suitable analyte to be used in methods of indoor air analysis for multi-organic pollutants. However, the best results (analytical features, recovery results, and stability results during storage) were obtained by the use of Supelpak 2 as a sorbent for DPA active sampling. Limits of Quantification (LOQs) for the GC-NPD system ranged from 1.0 to 2.0?µg?m?3 for 120 and 60?L air sampled, respectively. The developed air sampling procedure and analytical methodology was applied with success in the field to measure DPA residues in indoor air of two apple storage plants in Greece and results were further used to calculate the occupational inhalation exposure to DPA and consequently risk characterisation. Since DPA was detected in indoor air (at concentrations ranged from 1.6 to 580?µg?m?3), there is no zero occupational risk for workers. However, the inhalation exposure of workers to DPA estimated in this study is far below the Acceptable Operator Exposure Level recently reviewed by the European Union and far below the critical exposure level for haematotoxicity systemic effect observed in carcinogenicity studies in rats for long-term inhalation exposure to DPA.  相似文献   

6.
《Analytical letters》2012,45(8):701-734
Abstract

The use of packed-bed solid sorbent tubes was investigated for the collection and concentration of lead and lead compound aerosols utilizing a lead metal laboratory test atmosphere and lead containing automobile exhaust. Four different sorbents were tested: alumina (100–150 mesh), silica gel (80–200 mesh), Chromosorb 102 (60–80 mesh), and Tenax-GC (80–100 mesh). The following average collection efficiencies were observed for the first portion of each sorbent in the tube (200 mg of sorbent) when sampling automobile exhaust: 95.8 ± 5.7 % for alumina, 98.5 ± 3.2 % for silica gel, 98.0 ± 3.7 % for Chromosorb 102, and 99.2 ± 2.6 % for Tenax-GC. Using the lead metal test aerosol, the average efficiencies were 99.2 ± 1.0, 99.2 ± 1.1, 99.9 ± 0.1, and 100.0 ± 0.0 % for the alumina, silica gel, Chromosorb 102, and Tenax-GC, respectively. Consideration of percent collection efficiency, blank values, and elution efficiency of lead from the sorbent indicated that Tenax-GC provided the best results.  相似文献   

7.
A multiresidue method for determining more than 70 pesticides in air has been validated using a single injection with gas chromatography/tandem mass spectrometry (GC/MS/MS). The method validation considered both stages of sampling and analysis. The sampling method, based on active sampling using sorption in sorbent cartidges, was validated by generating standard atmospheres. Performance parameters of the method were evaluated, with a reduction in the limits of quantification by injecting a higher volume of sample extract, and increase of selectivity by the use of MS/MS detection mode. The method was based on solid-phase extraction, which permits a degree of automation. The best adsorbents were found to be Chromosorb 106 and Tenax TA. The retention capacity of these sampling sorbents allows up to 1440 L of air to be sampled without any breakthrough for most of the compounds. Data were generated for assessing the potential exposure of bystanders. The application of the method to the analysis of the air in urban locations near agricultural areas showed that pesticides were present in most of the samples.  相似文献   

8.
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar® bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation.  相似文献   

9.
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally.  相似文献   

10.
W S Wu  V S Gaind 《The Analyst》1992,117(1):9-12
The development of an efficient solid sorbent personal sampler with increased convenience for sample collection in workplaces is described. Several solid sorbents were coated with tryptamine, and sampling tubes were prepared with the coated sorbents. These tubes were evaluated for the collection of phenyl isocyanate vapour generated in a commercial test atmosphere generation system that permits the simultaneous collection of up to 12 uniformly loaded samples. Tryptamine-coated XAD-2 resin was shown to be the most efficient solid sorbent for the collection of airborne phenyl isocyanate. The optimum amount of tryptamine needed for coating XAD-2 resin was investigated.  相似文献   

11.
Abstract

A method for sampling and analysis of procymidone and vinclozolin in greenhouse air was investigated. The behaviour of Chromosorb 102, Porapak R, Supelpak-2, Amberlite XAD-2, Amberlite XAD-4 and polyurethane foam (PUF) as sorbents was studied. Atmospheres containing known concentrations of these pesticides were generated. The desorption process of the analytes, concentration step and behaviour of sorbents in air with different relative humidities were tested. No breakthrough was observed in the range of concentrations studied.

Personal samplers were used with the selected sorbent (PUF), for sampling procymidone and vinclozolin in an experimental greenhouse. GC-ECD analysis and MS confirmation were performed. The dissipation process of the analytes in the 24 h period after application was studied.  相似文献   

12.
Caro J  Gallego M 《Talanta》2008,76(4):847-853
A sensitive and reliable method has been developed for the determination of trihalomethanes (THMs) in air samples through adsorption in sorbent tubes and thermal desorption (TD) of the compounds, followed by gas chromatography (GC)–mass spectrometry (MS) analysis. Three commercial sorbent materials were compared in terms of adsorption efficiency and breakthrough volume, finding Chromosorb 102 to be the most appropriate adsorbent for air sampling. The method allows us to reach detection limits of 0.03 ng (0.01 μg m−3 for 3 l of air), linear ranges from 0.1 to 2000 ng and specific uncertainties of ca. 5.0 ± 0.2 ng for all THMs. Several salts were tested to reduce water retention (from the humid air of an indoor swimming pool) at the sampling stage, Na2SO4 being the one that provides optimum efficiency. The method was validated by a new recovery study in which several tubes with and without adsorbent were spiked with THMs and analyzed by TD-GC/MS, recoveries ranging from 92% to 97% for all the compounds. Finally, the performance of the method was evaluated through the analysis of ambient air samples from an indoor swimming pool and alveolar air samples from swimmers to assess their THM uptake. THMs were found to be stable in the sorbent tubes for at least 1 month when stored at 4 °C.  相似文献   

13.
价格低廉的CaO材料在高温下能高效吸附捕集CO2气体,被认为是碳减排的有效方法之一.然而,CaO长时间循环碳酸化/煅烧解吸后,其CO2的化学吸附容量下降,稳定性较差,限制了该材料的工业应用.本文采用天然钙源(牡蛎壳和方解石等)和化学试剂(醋酸钙)为钙基前驱材料制备CaO.采用扫描电子显微镜(SEM),X射线衍射仪(XRD)和氮气吸附仪等手段对制备的CaO材料进行形貌和物理结构的分析表征;在高温和模拟的烟道气氛条件下(10%C02和90%N2),采用热重分析仪测量CaO吸附CO2的能力和长时间循环碳酸化/煅烧解吸后的稳定性.我们经过与目前所报道的其他钙基吸附材料进行比较,并结合钙基前驱材料的市场价格,发现CaO(醋酸钙)的CO2吸附能力和稳定性较为理想,醋酸钙在高温烟气捕碳方面具有非常好的应用前景.  相似文献   

14.
A needle‐trap device, with immobilized sorbent inside the syringe, coupled with GC–MS was applied for air sampling and determination of chlorinated volatile organic compounds such as dichloromethane, trichloromethane, and tetrachloromethane. The application of a needle trap packed with combination of three sorbents including Tenax TA, Carbopack X, and Carboxen 1000 resulted in detection limits of few pg for chlorinated volatile compounds and recoveries of 99.2–102.8%. The extraction and desorption parameters were optimized within the study. As a result, the precision determined as RSD was equal to 5.05 and 3.03 and 6.52% for dichloromethane, trichloromethane, and tetrachloromethane, respectively. The storage time for chlorinated compounds up to 48 h and reusability of the needle‐trap device were verified. The obtained results have proved the ability of needle traps to compete with other solventless sampling and sample preparation extraction techniques.  相似文献   

15.
A fully automated solid-phase extraction (SPE)-high-performance liquid chromatographic method has been developed for the simultaneous analysis of substituted anilines and phenols in aqueous matrices at the low- to sub-microg/l level. Diode array and electrochemical detection operated in tandem mode were used for analyte detection. Two new polymeric sorbent materials (Hysphere-GP and Hysphere-SH) were evaluated for the on-line SPE of substituted anilines and phenols from aqueous matrices and their performance was compared with the PRP-1 and PLRP-S sorbents. Hysphere-GP sorbent packed in 10 x 2 mm cartridges was found to give better results in terms of sensitivity and selectivity of the overall analytical method. The proposed analytical method was validated for the analysis of these compounds in Axios river water that receives industrial, communal and agricultural wastes. The detection limits for all the compounds range between 0.05 and 0.2 microg/l, except for aniline and phenol which have detection limits of 0.5 and 1 microg/l, respectively (aniline detected by electrochemical detection). The recoveries for all the compounds are higher than 75% except for aniline (6%), phenol (50%) and 3-chlorophenol (67%). Finally, in order to evaluate the efficiency of the Hysphere-GP (10 x 2 mm) cartridges for sample stabilization and storage, the stability of the compounds of interest at the sorbed state onto these cartridges has been evaluated under three different temperature regimes (deep freeze, refrigeration, 20 degrees C).  相似文献   

16.
Alonso MC  Barceló D 《The Analyst》2002,127(4):472-479
Seven benzene- and naphthalenesulfonates (3-nitrobenzenesulfonate, 4-methylbenzenesulfonate, 1-hydroxy-4-naphthalenesulfonate, 1-amino-7-naphthalenesulfonate, 4-chlorobenzenesulfonate, 1-naphthalenesulfonate and 2-naphthalenesulfonate) were studied. A rapid method for quantifying aromatic sulfonated compounds from waste water samples was developed. This method consists in on-line in-field sampling and monitoring based on ion-pair solid-phase extraction with PLRP-S sorbent, using the new programmable field extraction system and ion-pair liquid chromatography with UV diode-array and electrospray mass spectrometry. Limits of detection for the studied compounds, using the SIM acquisition mode, ranged from 0.01 to 0.33 ng ml(-1). The influence of the aqueous matrix on the on-line SPE was checked by spiking ground and waste waters. Recoveries varied from 70 to 99% when 10 ml of water sample were enriched. The method was applied to the analysis of some environmental sewage samples. This study confirmed that high concentration levels of aromatic sulfonated compounds can be found in sewage samples. In addition, the stability of the seven studied sulfonated benzene and naphthalene compounds was investigated using on-line polymeric SPE pre-columns, based on the styrene-divinylbenzene polymer PLRP-S. Different storage conditions were tested to carry out the stability survey, which included storage at room temperature, at 4 degrees C and at -20 degrees C, during a period of up to 2 weeks. This study showed that the stability of aromatic sulfonic acids on disposable on-line SPE polymeric pre-columns is related to temperature and that the target compounds are more stable at lower temperatures.  相似文献   

17.
Among the chemicals belonging to the schedules of the Chemical Weapons Convention (CWC), sampling and analysis of highly volatile compounds such as hydrogen cyanide (HCN) require special consideration. The latter is present in numerous old chemical weapons that are stockpiled awaiting destruction in Northeastern France: thus, sampling on stockpile area and subsequent verification of HCN levels is compulsory to ensure safety of workers on these areas. The ability of several commercial sorbents to trap hydrogen cyanide at various concentration levels and in various humidity conditions, was evaluated. Furthermore, thermal desorption of the corresponding samples, followed by analysis by gas chromatography-mass spectrometry was also optimised. Carbosieve S-III, a molecular sieve possessing a very high specific area, proved the most efficient sorbent for HCN sampling in all conditions tested. Conversely, the presented results show that Tenax, albeit generally considered as the reference sorbent for air monitoring and analysis of CWC-related chemicals, is not suitable for HCN trapping.  相似文献   

18.
Two new generation polymeric resins, Bond Elut ENV (styrene-divinylbenzene) from Varian and LiChrolut EN (ethylvinylbenzene-divinylbenzene) from Merck, commonly used in liquid--solid-phase extraction (SPE) were evaluated as sorbents for gas-phase sampling followed by thermal desorption and compared to Tenax TA, a reference sorbent in this kind of applications. The three resins were tested against seven volatile organic compounds (VOCs): 1-octene, ethylbenzene, (p-, m-, o-)xylenes, styrene and 1,4-dichlorobenzene. Elution curves for all compounds were determined at temperatures from 120 to 180 degrees C, and from such curves, different parameters, such as retention factor (k), distribution coefficient (K), height equivalent to a theoretical plate (H), asymmetry factor (Fa) and breakthrough volume (VB) were calculated and extrapolated at room (25 degrees C) and desorption (220 degrees C) temperatures in order to estimate breakthrough and elution volumes. In average, retention in LiChrolut EN is 10 and 200 times stronger than in Bond Elut ENV and Tenax TA, respectively, but its chromatographic behavior is rather poor giving quite asymmetric elution profiles (Fa >1.8 at 120 degrees C). Bond Elut ENV exhibited the best chromatographic behavior, with H values two or five times lower than those of LiChrolut EN or Tenax TA. An additional advantage of the new sorbents is that retention decreases with T much faster than it does in Tenax (8 or 20 times for Bond Elut ENV or LiChrolut EN). Modeling has finally shown that beds with 60-80 (for Bond Elut ENV) or 300-400 (for LiChrolut EN) times less of sorbent have the same retention properties than standard Tenax TA tubes and similar (LiChrolut EN) or five to six times smaller (Bond Elut ENV) elution volumes. These predictions have been experimentally confirmed.  相似文献   

19.
The most difficult problem in hot gas desulfurization in Integrated Coal Gasification Combined Cycle (IGCC) is the pulverization of sulfur removal sorbents. Appropriate binders for hot gas sulfur removal sorbents can solve the pulverization problem. In this paper, six sorbents with binders of different argillaceous minerals were prepared by mechanical mixing method. Desulfurization behavior for hot gas desulfurization sorbents was investigated in a fixed-bed reactor. Result showed that sorbent NTKW2 with binder of clay had a better sulfidation performance. NTKW2 had a more stable performance than other sorbents in the continuous sulfidation-regeneration cycles. Sulfur capacity of sorbent remained the same in each cycle. The desulfurization efficiency and mechanical strength of NTKW2 were the best among the tested sorbents. The behavior of NTKW2 at different temperatures showed different performances, and the best reaction temperature was 550 ℃. Higher heat stability, sulfur capacity and desulfurization efficiency were found on NTKW2 in six continuous sulfidation-regeneration cycles.  相似文献   

20.
Nicotine in a smoky indoor air environment can be determined using graphitized carbon black as a solid sorbent in quartz tubes. The temperature stability, high purity, and heat absorption characteristics of the sorbent, as well as the permeability of the quartz tubes to microwaves, enable the thermal desorption by means of microwaves after active sampling. Permeation and dynamic dilution procedures for the generation of nicotine in the vapor phase at low and high concentrations are used to evaluate the performances of the sampler. Tube preparation is described and the microwave desorption temperature is measured. Breakthrough volume is determined to allow sampling at 0.1-1 L/min for definite periods of time. The procedure is tested for the determination of gas and paticulate phase nicotine in sidestream smoke produced in an experimental chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号