首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium geometries and bond dissociation energies of 16VE and 18VE complexes of ruthenium and iron with a naked carbon ligand are reported using density functional theory at the BP86/TZ2P level. Bond energies were also calculated at CCSD(T) using TZ2P quality basis sets. The calculations of [Cl2(PMe3)2Ru(C)] (1Ru), [Cl2(PMe3)2Fe(C)] (1Fe), [(CO)2(PMe3)2Ru(C)] (2Ru), [(CO)2(PMe3)2Fe(C)] (2Fe), [(CO)4Ru(C)] (3Ru), and [(CO)4Fe(C)] (3Fe) show that 1Ru has a very strong Ru-C bond which is stronger than the Fe-C bond in 1Fe. The metal-carbon bonds in the 18VE complexes 2Ru-3Fe are weaker than those in the 16VE species. Calculations of the related carbonyl complexes [(PMe3)2Cl2Ru(CO)] (4Ru), [(PMe3)2Cl2Fe(CO)] (4Fe), [(PMe3)2Ru(CO)3] (5Ru), [(PMe3)2Fe(CO)3] (5Fe), [Ru(CO)5] (6Ru), and [Fe(CO)5] (6Fe) show that the metal-CO bonds are much weaker than the metal-C bonds. The 18VE iron complexes have a larger BDE than the 18VE ruthenium complexes, while the opposite trend is calculated for the 16VE compounds. Charge and energy decomposition analyses (EDA) have been carried out for the calculated compounds. The Ru-C and Fe-C bonds in 1Ru and 1Fe are best described in terms of two electron-sharing bonds with sigma and pi symmetry and one donor-acceptor pi bond. The bonding situation in the 18 VE complexes 2Ru-3Fe is better described in terms of closed shell donor-acceptor interactions in accordance with the Dewar-Chatt-Duncanson model. The bonding analysis clearly shows that the 16VE carbon complexes 1Ru and 1Fe are much more strongly stabilized by metal-C sigma interactions than the 18VE complexes which is probably the reason why the substituted homologue of 1Ru could become isolated. The EDA calculations show that the nature of the TM-C and TM-CO binding interactions resembles each other. The absolute values for the energy terms which contribute to Delta(Eint) are much larger for the carbon complexes than for the carbonyl complexes, but the relative strengths of the energy terms are not very different from each other. The pi bonding contribution to the orbital interactions in the carbon complexes is always stronger than sigma bonding. There is no particular bonding component which is responsible for the reversal of the relative bond dissociation energies of the Ru and Fe complexes when one goes from the 16VE complexes to the 18VE species. That the 18 VE compounds have longer and weaker TM-C and TM-CO bonds than the respective 16 VE compounds holds for all complexes. This is because the LUMO in the 16 VE species is a sigma-antibonding orbital which becomes occupied in the 18 VE species.  相似文献   

2.
The photochemistry of the phosphine-substituted transition metal carbonyl complexes Cr(CO)(5)PH(3) and ax-Fe(CO)(4)PH(3) is studied with time-dependent DFT theory to explore the propensity of the excited molecules to expel their ligands. The influence of the PH(3) ligand on the properties of these complexes is compared with the photodissociation behavior of the binary carbonyl complexes Cr(CO)(6) and Fe(CO)(5). The lowest excited states of Cr(CO)(5)PH(3) are metal-to-ligand charge transfer (MLCT) states, of which the first three are repulsive for PH(3) but modestly bonding for the axial and equatorial CO ligands. The repulsive nature is due to mixing of the initial MLCT state with a ligand field (LF) state. A barrier is encountered along the dissociation coordinate if the avoided crossing between these states occurs beyond the equilibrium distance. This is the case for expulsion of CO but not for the PH(3) group as the avoided state crossing occurs within the equilibrium Cr-P distance. The lowest excited state of ax-Fe(CO)(4)PH(3) is a LF state that is repulsive for both PH(3) and the axial CO. Excited-state quantum dynamics calculations for this state show a branching ratio of 99 to 1 for expulsion of the axial phosphine ligand over an axial CO ligand. The nature of the phosphorus ligand in these Cr and Fe complexes is only of modest importance. Complexes containing the three-membered phosphirane or unsaturated phosphirene rings have dissociation curves for their lowest excited states that are similar to those having a PH(3) ligand. Analysis of their ground-state Cr-P bond properties in conjunction with frontier orbital arguments indicate these small heterocyclic groups to differ from the PH(3) group mainly by their enhanced sigma-donating ability. All calculations indicate that the excited Cr(CO)(5)L and Fe(CO)(4)L molecules (L = PH(3), PC(2)H(5), and PC(2)H(3)) prefer dissociation of their phosphorus substituent over that of an CO ligand. This suggests that the photochemical approach may be a viable complement to the ligand exchange and redox methods that are currently employed to demetalate transition metal complexed organophosphorus compounds.  相似文献   

3.
The structures of the versatile starting compounds for organoiron complexes, the cationic aqua complex [(η5-C5Me4Et)Fe(CO)2(OH2)]BF4 (1b) and the halide complexes (η5-C5Me5)Fe(CO)2-I (2a), (η5-C5Me4Et)Fe(CO)2-I (2b) and (η5-C5Me4Et)Fe(CO)2-Cl (3b), are characterized by X-ray crystallography. Complex 1b [Fe---O: 2.022(8) Å and 2.043(9) Å, two independent molecules] is the first structurally characterized example of organoiron aqua complexes. Details of the synthetic procedures for the above complexes and the labile cationic THF complexes [η5-C5R5)Fe(CO)2(THF)]BF4 (4) are disclosed, and the dissociation equilibrium of 4 is confirmed by means of variable temperature 1H-NMR as well as saturation transfer experiment.  相似文献   

4.
Multiphoton dissociation-ionization dynamics of Fe(CO)_5 were studied mass spectrometrically with a molecular beam and XeCl excimer laser. The results show that Fe(CO)_n~+ (n= 1,2,… ,5) and Fe_2(CO)_4~+ ions are formed mainly via ion-molecule reaction between Fe~+ and Fe(CO)_5 and dissociation following. A “ladder” model of Fe(CO)_5 photodissociation is presented in the paper.  相似文献   

5.
Deleterious gases such as CO and H(2)S can cause degradation of steel by reacting with the metal surface. Here we consider whether alloying the steel surface might be able to inhibit these damaging surface reactions by raising the barriers to molecular dissociation. We employ first-principles density functional theory techniques to investigate the elementary reaction pathways and barriers for CO and H(2)S on FeAl and Fe(3)Si surfaces and compare them with pure Fe surfaces (as a model for steel). We find that H(2)S dissociates on iron surfaces much more easily than CO does. Although FeAl surfaces raise the barriers for H(2)S dissociation, they significantly lower the barriers for CO dissociation. On the other hand, Fe(3)Si surfaces raise the barriers for CO dissociation, but they are as vulnerable as Fe surfaces to H(2)S dissociation. Our findings suggest that alloying iron with Al or Si is unlikely to simultaneously increase its resistance to the initial stages of chemical degradation by CO and H(2)S.  相似文献   

6.
Here we present a comprehensive study of the thermodynamic parameters (enthalpy, entropy, and volume changes) associated with carbon monoxide photodissociation and rebinding to Fe(II) microperoxidase-11 (Fe(II)MP11) and Fe(ll) tetrakis(4-sulfonatophenyl)porphine complex (FeII4SP) with water and 2-methylimidazole as proximal ligands. CO photodissociation from FeII4SP complexes is accompanied by a positive volume change of approximately 17 mL mol(-1). A smaller volume change of approximately 12 mL mol(-1) was observed for CO dissociation from Fe(II)MP-11. We attribute the positive volume change to cleavage of the Fe-CO covalent bond and to solvent reorganization due to the low-spin to high-spin transition. CO binding is an exothermic reaction with an enthalpy change of -17 kcal mol(-1) for the CO-FeII4SP complexes and -13 kcal mol(-1) for the CO-Fe(II)MP11 complex. In all cases, the ligand recombination occurs as a single-exponential process indicating that CO dissociation is followed by direct CO rebinding to a high-spin five-coordinate complex without concomitant dissociation of the proximal base. In addition, observed negative activation entropies and volumes for ligand binding to (2-Melm)FeII4SP and MP-11, respectively, suggest that CO rebinding can be described by an associative mechanism with bond formation being the rate-limiting step.  相似文献   

7.
Large basis CCSD(T) calculations are used to calculate the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. . The relative energy of the excited singlet state of Fe(CO)4 with respect to the ground triplet state is not known experimentally, and various lower levels of theory predict very different results. Upon extrapolating to the infinite basis set limit, and including corrections for core-core and core-valence correlation, scalar relativity, and multi-reference character of the wavefunction, the best CCSD(T) estimate for the spin-state splitting in iron tetracarbonyl is 2 kcal mol(-1). Calculation of the dissociation energy of 1Fe(CO)4(L) into singlet fragments, taken together with known experimental behaviour of triplet Fe(CO)4, provides independent evidence for the fact that the spin-state splitting is smaller than 3 kcal mol(-1). These calculations highlight some of the challenges involved in benchmark calculations on transition metal containing systems.  相似文献   

8.
傅钢  吕鑫  徐昕  万惠霖 《分子催化》2001,15(6):484-486
应用UBI-QEP方法, 估算了CO2-在金属表面的吸附热, 并计算了CO2在Cu(111)、Pd(111)、Fe(111)、Ni(111)表面的各种反应途径的活化能垒. 结果表明, CO2-在4种过渡金属表面相对的稳定性和CO2解离吸附的活性顺序一致,均为Fe>Ni>Cu>Pd. 说明CO2-可能是CO2解离吸附的关键中间体. 在Cu、Pd、Ni表面上, CO2解离吸附的最终产物是CO,而在Fe表面其最终会解离成C和O. 在Cu、Fe、Ni表面, CO2加氢活化是一种有效模式, 而在Pd上则不容易进行. 在Cu和Pd表面,碳酸盐物种也可能是CO2活化的重要中间体.  相似文献   

9.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

10.
The valence electronic excited states of Fe2(CO)9 have been studied using the time-dependent density functional theory (TDDFT). Both tribridged D3h and monobridged C2v structures have been considered, and the structure of selected low-lying singlet and triplet excited states have been optimized on the basis of the TDDFT analytical gradient. Optimized excited-state geometries are used to obtain an insight into certain aspects of the Fe2(CO)9 photochemistry. The Fe2(CO)9 (D3h) first triplet and second singlet excited states are unbound with respect to dibridged Fe2(CO)8 + CO, and the first two monobridged Fe2(CO)9 (C2v) singlet states are unbound with respect to the Fe(CO)5 + Fe(CO)4 dissociation. These results are discussed in light of the experimental data available.  相似文献   

11.
Using periodic slab density functional theory, we investigate CO adsorption, diffusion, and dissociation energetics on a monolayer of Al covering Fe(100) [Al/Fe(100)]. We predict a weakly chemisorbed state of CO to exist on Al/Fe(100), with CO adsorbing on the 4-fold hollow site in a very tilted fashion. This state is predicted to have an extremely low CO stretching frequency of only 883 cm(-1), indicating a dramatically weakened CO bond relative to gaseous CO, even though the molecule is predicted to bind to Al/Fe(100) quite weakly. We predict that dissociation of CO starting from this weakly adsorbed state has a barrier of only approximately 0.35 eV, which is approximately 0.70 eV lower than that on Fe(100). To understand how the underlying substrate changes the electronic properties of the supported Al monolayer, we compare CO adsorption on Al/Fe(100) to its adsorption on analogous pure Al(100) surfaces. This highly activated yet weakly bound state of CO on Al/Fe(100) suggests that Al/Fe(100) could be an effective low-temperature bimetallic catalyst in reducing environments.  相似文献   

12.
采用密度泛函方法研究了Fe(100)表面Cu单层膜上CO的吸附,直接解离,氢助解离以及C-C偶合反应.相比洁净的Fe(100)表面,在Fe(100)的单层Cu膜上,CO的吸附和活化都减弱了.特别是,相比Fe(100)上CO的解离能垒1.08 eV,铜单层膜上CO解离能垒高达2.4 eV.在H原子共吸附的情况下,Fe(1...  相似文献   

13.
Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5Cr? O, (OC)4Fe? O, and (OC)3Ni? O] and dioxygen‐metal carbonyls [(OC)5Cr? OO, (OC)4Fe? OO, and (OC)3Ni? OO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (Cr? O), 74 (Fe? O), and 51 (Ni? O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr? OO), 21 (Fe? OO), and 4 (Ni? OO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Time-resolved infrared (TRIR) flash photolytic techniques have been employed to initiate and observe the efficient dissociation of CO from a synthetic heme-CO/copper complex, [((6)L)Fe(II)(CO)..Cu(I)](+) (2), in CH(3)CN and acetone at room temperature. In CH(3)CN, a significant fraction of the photodissociated CO molecules transiently bind to copper (nu(CO)(Cu) = 2091 cm(-)(1)) giving [((6)L)Fe(II)..Cu(I)(CO)](+) (4), with an observed rate constant, k(1) = 1.5 x 10(5) s(-)(1). That is followed by a slower direct transfer of CO from the copper moiety back to the heme (nu(CO)(Fe) = 1975 cm(-)(1)) with k(2) = 1600 s(-)(1). Additional transient absorption (TA) UV-vis spectroscopic experiments have been performed monitoring the CO-transfer reaction by following the Soret band. Eyring analysis of the temperature-dependent data yields DeltaH(double dagger) = 43.9 kJ mol(-)(1) for the 4-to-2 transformation, similar to that for CO dissociation from [Cu(I)(tmpa)(CO)](+) in CH(3)CN (DeltaH(double dagger) = 43.6 kJ mol(-)(1)), suggesting CO dissociation from copper regulates the binding of small molecules to the heme within [((6)L)Fe(II)..Cu(I)](+)(3). Our observations are analagous to those observed for the heme(a3)/Cu(B) active site of cytochrome c oxidase, where photodissociated CO from the heme(a3) site immediately (ps) transfers to Cu(B) followed by millisecond transfer back to the heme.  相似文献   

15.
Sulfur is known to be a poison to several catalytic reactions, e.g., the Fischer-Tropsch synthesis (FTS), in which it affects drastically the performance of both iron- and cobalt-based catalysts. However, despite the importance of this industrial process, little is known about what elementary steps are poisoned by sulfur. In the present article, we report, using density functional theory, the effect of sulfur on one of the most relevant reactions in the FTS: the dissociation of carbon monoxide over iron surfaces. We have studied the adsorption and dissociation of CO on Fe(100)-S-p(2 x 2) (theta(S) = 0.25 ML) and on Fe(100)-S-c(2 x 2) (theta(S) = 0.50 ML). We have found surface configurations that correlate well with the desorption features observed in temperature-programmed desorption mass spectroscopy. In addition, we have calculated the activation energy of CO dissociation on Fe(100)-S-p(2 x 2), which, interestingly, is very similar to the activation energy of CO dissociation on the sulfur-free Fe(100) surface. However, the sign of the reaction changes by the presence of sulfur; CO dissociation is highly exothermic on the sulfur-free Fe(100) surface, whereas on the Fe(100)-S-p(2 x 2) surface, it is slightly endothermic. Moreover, according to our results, the influence of sulfur in the CO dissociation seems to be short-ranged.  相似文献   

16.
《Chemical physics letters》2001,331(3-4):313-317
The dissociation energies of Fe(CO)n (n=2–4) are computed using correlation consistent basis sets and the CCSD(T) approach. The dissociation energies are extrapolated to the CBS limit and are corrected for core–valence (CV), scalar relativistic, spin–orbit, zero-point, and thermal effects. Our iron carbonyl bond strengths agree with experiment within the respective error bars. We use our dissociations energies at 298 K to obtain the heats of formation of Fe(CO)n (n=1–4).  相似文献   

17.
In the present article, we report adsorption energies, structures, and vibrational frequencies of CO on Fe(100) for several adsorption states and at three surface coverages. We have performed a full analysis of the vibrational frequencies of CO, thus determining what structures are stable adsorption states and characterizing the transition-state structure for CO dissociation. We have calculated the activation energy of dissociation of CO at 0.25 ML (ML = monolayers) as well as at 0.5 ML; we have studied the dissociation at 0.5 ML to quantify the destabilization effect on the CO(alpha3) molecules when a neighboring CO molecule dissociates. In addition, it is shown that the number and nature of likely adsorption states is coverage dependent. Evidence is presented that shows that the CO molecule adsorbs on Fe(100) at fourfold hollow sites with the molecular axis tilted away from the surface normal by 51.0 degrees. The asorprton energy of the CO molecule is -2.54 eV and the C-O stretching frequency is 1156 cm(-1). This adsorption state corresponds to the alpha3 molecular desorption state reported in temperature programmed desorption (TPD) experiments. However, the activation energy of dissociation of CO(alpha3) molecules at 0.25 ML is only 1.11 eV (approximately 25.60 kcal mol(-1)) and the gain in energy is -1.17 eV; thus, the dissociation of CO is largely favored at low coverages. The activation energy of dissociation of CO at 0.5 ML is 1.18 eV (approximately 27.21 kcal mol(-1)), very similar to that calculated at 0.25 ML. However, the dissociation reaction at 0.5 ML is slightly endothermic, with a total change in energy of 0.10 eV Consequently, molecular adsorption is stabilized with respect to CO dissociation when the CO coverage is increased from 0.25 to 0.5 ML.  相似文献   

18.
High-energy collisional activation mass spectrometry of HFe(CO)5+ ions shows that Fe(CO)5 is protonated on the iron atom rather than on one of the ligands. This finding is supported by ab initio quantum chemical calculations. The value of the proton affinity of Fe(CO)5 was measured by high-pressure mass spectrometry to be 857 kJ mol?1. The Fe? CO bond dissociation energies for HFe(CO)n+ (n = 1–5) were measured by energy-variable low-energy collisional activation mass spectrometry. The Fe? H bond dissociation energies in HFe(CO)n+ ions were also determined. A synergistic effect on the strengths of the Fe? H and Fe? CO bonds in HFe(CO)+ is noticed. It is demonstrated that the electronically unsaturated species HFe(CO)n+ (n = 3, 4) formed in exothermic proton-transfer reactions with Fe(CO)5 form adducts with CH4. Adducts between C2H5+ or C3H5+ and Fe(CO)n are observed. These adducts are probably formed in direct reactions between the respective carbocations and Fe(CO)5.  相似文献   

19.
Nine Ge−Fe carbonyl cluster compounds are prepared via ionic liquids-based synthesis. This includes the novel compounds [EMIm][Fe(CO)3I(GeI3)], [EHIm][Fe(CO)3I(GeI3)], [BMIm][GeI2{Fe(CO)4}2(μ-I)][AlCl4]2, [GeI2{Fe(CO)4}2(μ-I)][Fe(AlBr4)3], [BMIm]2[(FeI2)0.75{Fe(CO)2I(GeI3)2}2], and [EHIm][Fe(CO)4(GeI2)2Fe(CO)3GeI3] as well as the previously reported compounds (Fe(CO)4(GeI3)2, FeI4{GeI3Fe(CO)3}2, and Ge12{Fe(CO)3}8(μ-I)4 (EMIm: 1-ethyl-3-methylimidazolium, EHIm: 1-ethylimidazolium, BMIm: 1-butyl-3-methylimidazolium). With this series of compounds, a comparison of synthesis conditions and structural features is possible and, for instance, allows correlating the composition and structure of the respective Ge−Fe carbonyl cluster compounds with the type and acidity of the ionic liquid. With [EMIm][{GeI3}2Fe(CO)3I], moreover, we can exemplarily show the thermal decomposition as a single-source precursor in the ionic liquid, resulting in bimetallic Ge−Fe nanoparticles with small size and narrow size distribution (7.0±1.4 nm).  相似文献   

20.
Direct CO dissociation is seen the main path of the first step in the Fischer–Tropsch Synthesis (FTS) on the reactive iron surfaces. Cu/Fe alloy film is addressed with various applications over face‐centered‐cubic (fcc)‐Cu and body‐centered‐cubic (bcc)‐Fe in the FTS, i.e. preventing iron carbide formation (through direct CO dissociation) by moderating the surface reactivity and facilitating the reduction of iron surfaces, respectively. In this study by density functional theory, the stable configurations of CO molecule on various Cu/Fe alloys over fcc‐Cu(100) and bcc‐Fe(100) surfaces with different CO coverage (25% and 50%) have been evaluated. Our results showed that the ensemble effect plays a fundamental role to CO adsorption energy on the surface alloys over bcc‐Fe(100); on the other hand, the ligand effect determines the CO stability on the fcc‐Cu(100) surface alloys. CO dissociation barrier was also calculated on the surface alloys that showed although the CO dissociation process is thermodynamically possible on the more reactive surface alloys, but according to their high barrier, CO dissociation does not occur directly on these surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号