首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near the critical temperature of a superconducting transition, the energy of the threshold perturbation δFthr that transfers a superconducting bridge to a resistive state at a current below the critical current Ic has been determined. It has been shown that δFthr increases with a decrease in the length of a bridge for short bridges with lengths L < ξ (where ξ is the coherence length) and is saturated for long bridges with L ? ξ. At certain geometrical parameters of banks and bridge, the function δFthr(L) at the current I → 0 has a minimum at L ~ (2–3)ξ. These results indicate that the effect of fluctuations on Josephson junctions made in the form of short superconducting bridges is reduced and that the effect of fluctuations on bridges with lengths ~(2–3)ξ is enhanced.  相似文献   

2.
Periodic oscillations in the dependence V dc(B) of rectified dc voltage on the perpendicular magnetic field have been experimentally observed near the critical temperature in a single superconducting aluminum ring with slight geometric inhomogeneities (without specially formed circular asymmetry), biased by an external ac current (without a dc component). With a change in the external current and temperature, the voltage V dc(B) behaves like the corresponding voltage on a circularly asymmetric ring but has a much smaller amplitude. The Fourier spectrum of the function V dc(B) contains the fundamental frequency, corresponding to the ring area, and its highest harmonics. “Satellite” frequencies, dependent on the structure geometry and external parameters, were unexpectedly found in the spectrum.  相似文献   

3.
The critical current I C of S-FNF-S Josephson junctions, which are ferromagnet (F)-normal metal (N)-ferromagnet multilayer structures whose ends are in contact with the superconducting (S) electrodes, has been calculated. It has been shown that both the magnitude and sign of I C depends significantly on the misorientation angle α of the magnetization vectors M 1, 2 of the ferromagnetic films and the distance L between the superconducting electrodes. The effect of the triplet superconducting component ~〈ψ↑ψ↑〉 ~〈ψ↓ψ↓〉 appearing in the structure on I C(α) has been analyzed. It has been proven that a new type of the π junction exists, appearing due to the superposition of two contributions to I C that decrease monotonically with L and are damped at lengths about the coherence length of the normal metal. It has been shown that the effective control over the magnitude and sign of I C of the structure is achieved at a small deflection of the vectors M 1, 2 from the antiferromagnetic (M 1 ↑↓ M 2) configuration.  相似文献   

4.
The localization properties of eigenfunctions for two interacting particles in theone-dimensional Anderson model are studied for system sizes up to N = 5000 sitescorresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. Theeigenfunction structure is illustrated in position, momentum and energy representation,the latter corresponding to an expansion in non-interacting product eigenfunctions.Different types of localization lengths are computed for parameter ranges in system size,disorder and interaction strengths inaccessible until now. We confirm that one-parameterscaling theory can be successfully applied provided that the condition of N being significantlylarger than the one-particle localization length L1 is verified.The enhancement effect of the two-particle localization length L2 behaving asL2 ~ L21 is clearly confirmed for a certain quite large intervalof optimal interactions strengths. Further new results for the interaction dependence in avery large interval, an energy value outside the band center, and different interactionranges are obtained.  相似文献   

5.
A. A. Bykov 《JETP Letters》2009,89(11):575-578
The effect of millimeter microwave radiation on the electron transport of two-dimensional (2D) ballistic microbars formed on the basis of individual GaAs quantum wells at a temperature of T = 4.2 K in magnetic fields B < 0.6 T has been investigated. Differences have been revealed in the magnetic field dependences of the microwave photoresistance of a 2D electron gas in Hall bars with a length L and a width W for the cases L, W > l p and L, W < l p , where l p is the electron mean free path for momentum. The microwave photoresistance in macroscopic bars (L, W > l p ) is a periodic alternating function of the inverse magnetic field; in microbars (L, W < l p ), it is a periodic positive function of 1/B. The experimental results indicate that the mechanisms of the microwave photoresistance of a 2D electron gas are different for macroscopic and microscopic bars.  相似文献   

6.
The critical current I c of S-(FN)-S Josephson structures has been calculated as a function of the distance L between superconducting (S) electrodes using the Usadel quasiclassical equations for the case of specifying the supercurrent in the direction parallel to the interface between the ferromagnetic (F) and normal (N) films of the composite weak-link region. It has been shown that, owing to the interaction between F and N films, both the typical decrease scale I c(L) and the period of the critical current oscillations can be much larger than the respective quantities for the SFS junctions. The conditions have been determined under which these lengths are on the order of the effective depth ζN of superconductivity penetration to a normal metal.  相似文献   

7.
This article presents an investigation on heat transfer enhancement in a round tube inserted with a helically twisted tape. The effects of a helically twisted tape with alternate axis (HTT-A) on heat transfer, friction factor, and thermal performance factor behaviours are reported for the turbulent regime. HTT-A geometries are tape pitch to tube diameter, P/D = 1.0, 1.5, and 2.0; alternate length to pitch length, l/P = 1.0, 1.5, and 2.0; twisted length to tape width, y/W = 3.0; and tape width to tube diameter, w/D = 0.2. The experiment has been performed by varying the volumetric air flow rate in order to adjust Reynolds number ranging from 6 000 to 20 000. The wall of the testing tube is uniformly heated as a constant heat flux while the tests are covered with thermal insulations to reduce heat loss to surroundings. Thermal performance is evaluated by comparing the present experimental results with the results of the modified HTT-A and also those obtained from previous study (conventional helically twisted tape, HTT). The thermal performance of tested tube with HTT-A is evaluated to obtain the degree of heat transfer enhancement and friction factor induced by HTT-A with respect to the plain tube under the same test conditions. Evenly, it is interesting to observe that the tube with HTT-A consistently possesses higher heat transfer and thermal performance factor than those with the HTT around 14.1% and 1.9%, respectively. The HTT-A with the smaller pitch ratio and adjacent twist length provides higher heat transfer rate and friction factor than the one with larger pitch ratio and alternate length as a result of a larger contact surface area, stronger swirl intensity and, thus, better fluid mixing near the tube wall. In the range determined, the tubes with the largest pitch ratio (P/D = 2.0) and smallest alternate length (l/P = 1.0) give the highest thermal performance factor at around 1.35. In addition, the empirical correlations of the Nusselt number, friction factor, and thermal performance factor are also described.  相似文献   

8.
We study correlated states in circular and linear-chain configurations of identical two-level atoms containing the energy of a single quasi-resonant photon in the form of a collective excitation, where the collective behavior is mediated by exchange of transverse photons between the atoms. For a circular atomic configuration containing N atoms, the collective energy eigenstates can be determined by group-theoretical means making use of the fact that the configuration possesses a cyclic symmetry group Z N . For these circular configurations, the carrier spaces of the various irreducible representations of the symmetry group are at most two-dimensional, so that the effective Hamiltonian on the radiationless subspace of the system can be diagonalized analytically. As a consequence, the radiationless energy eigenstates carry a Z N quantum number p = 0, 1, …, N, which is analogous to the angular momentum quantum number l = 0, 1, … carried by particles propagating in a central potential, such as a hydrogen-like system. Just as the hydrogen s states are the only electronic wave functions that can occupy the central region of the Coulomb potential, the quasi-particle corresponding to a collective excitation of the circular atomic sample can occupy the central atom only for vanishing Z N quantum number p. When a central atom is present, the p = 0 state splits into two, showing level crossing at certain radii; in the regions between these radii, damped oscillations between two “ extreme” p = 0 states occur, where the excitation occupies either the outer atoms or the central atom only. For large numbers of atoms in a maximally subradiant state, a critical interatomic distance of λ/2 emerges both in the linear-chain and in the circular configuration of atoms. The spontaneous decay rate of the linear configuration exhibits a jumplike “critical” behavior for next-neighbor distances close to a half-wavelength. Furthermore, both the linear-chain and the circular configurations exhibit exponential photon trapping once the next-neighbor distance becomes less than a half-wavelength, with the suppression of spontaneous decay being particularly pronounced in the circular system. In this way, circular configurations containing sufficiently many atoms may be natural candidates for single-photon traps.  相似文献   

9.
Dependences of the dispersion laws and damping of waves in an initially sinusoidal superlattice on inhomogeneities with anisotropic correlation properties are studied for the first time. The period of the superlattice is modulated by the random function described by the anisotropic correlation function K?(r) that has different correlation radii, k ?1 and k ?1 , along the axis of the superlattice z and in the plane xy, respectively. The anisotropy of the correlation is characterized by the parameter λ=1?k/k that can change from λ=0 to λ=1 when the correlation wave number k⊥ changes from k=k (isotropic 3D inhomogeneities) to k=0 (1D inhomogeneities). The correlation function of the superlattice K(r) is developed. Its decreasing part goes to the asymptote L that divides the correlation volume into two parts, characterized by finite and infinite correlation radii. The dependences of the width of the gap in the spectrum at the boundary of the Brillouin zone δν and the damping of waves ξ on the value of λ are studied. It is shown that decreasing L leads to the decrease of δν, and increase of ξ, with the increase of λ.  相似文献   

10.
Spin transitions of cobalt ions in LaCoO3 single crystals have been studied by the method of X-ray magnetic circular dichroism (XMCD) at the K- and L2,3-edges of Co3+ ions. The orbital momentum of cobalt ions obtained for the K-edge at the 3d level in the region of the spin transition in the temperature range from 25 to 120 K increases by a factor of approximately 1.6, whereas the slope of the magnetization curve value in the same temperature range and magnetic field increases by a factor of more than 10. XMCD experiments at the cobalt L2,3-edges demonstrate gradual growth of the ratio of the orbital momentum to the spin one L/S from 0.48 to 0.53 in the temperature range from 60 K to 120 K.  相似文献   

11.
The present work presents numerical study of the influence of geometry on the performance of an oscillating water column (OWC) wave energy converter by means of a constructal design. The main purpose is to maximize the root mean square hydrodynamic power of device, (Phyd)RMS, subject to several real scale waves with different periods. The problem has two constraints: hydropneumatic chamber volume (V HC ) and total OWC volume (V T ), and two degrees of freedom: H1/L (ratio of height to length of the hydropneumatic chamber) and H3 (OWC submergence). For the numerical solution it was used a computational fluid dynamic (CFD) code, based on the finite volume method (FVM). The multiphasic volume of fluid (VOF) model is applied to tackle with the water–air interaction. The results led to important theoretical recommendations about the design of OWC device. For instance, the best shape for OWC chamber, which maximizes the (Phyd)RMS, was achieved when the ratio (H1/L) was four times higher than the ratio of height to length of incident wave (H/λ), (H1/L) o = 4(H/λ). Moreover, the optimal submergence (H3) was achieved as a function of wave height (H) and water depth (h), more precisely given by the following relation: h ? (3H/4) ≤ (H3) o h.  相似文献   

12.
Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W(g), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d–1 × L z , characterizing by parameters L/ξ and L z /L (ξ is the correlation length, d is the dimension of space). This family contains the Gaussian and log-normal distributions, typical for the metallic and localized phases. For a certain choice of parameters, we reproduce the results for the cumulants of conductance in the space dimension d = 2 + ? obtained in the framework of the σ-model approach. The universal property of distributions is existence of two asymptotic regimes, log-normal for small g and exponential for large g. In the metallic phase they refer to remote tails, in the critical region they determine practically all distribution, in the localized phase the former asymptotics forces out the latter. A singularity at g = 1, discovered in numerical experiments, is admissible in the framework of their calculational scheme, but related with a deficient definition of conductance. Apart of this singularity, the critical distribution for d = 3 is well described by the present theory. One-parameter scaling for the whole distribution takes place under condition, that two independent parameters characterizing this distribution are functions of the ratio L/ξ.  相似文献   

13.
Noncentrosymmetric crystals of iodates and titanates have been systematized, and the principles of the design of new nonlinear optical materials by means of revealing empirical composition-structure-property relationships have been considered. It is demonstrated that, in the diagram of chemical bond lengths, noncentrosymmetric crystals of simple and binary iodates and titanates are located within the rosette formed by three partially intersecting ellipses. The empirical dependences of the nonlinear optical susceptibility χ(2) of the crystal on the length of the shortest metal-oxygen chemical bond L are established for iodates and titanates. These dependences exhibit maxima at L = 177 and 180 pm for iodates and L = 177 and 188 pm for titanates.  相似文献   

14.
The breakdown characteristics of a discharge tube with a configuration typical of gas-discharge light sources and electric-discharge lasers (a so-called “long discharge tube”) filled with argon or helium at a pressure of 1 Torr have been investigated. A breakdown has been implemented using positive and negative voltage pulses with a linear leading edge having a slope dU/dt ~ 10–107 V/s. Visible light from an external source (halogen incandescent lamp) is found to affect the breakdown characteristics. The dependences of the dynamic breakdown voltage of the tube on dU/dt and on the incident light intensity are measured. The breakdown voltage is found to decrease under irradiation of the high-voltage anode of the tube in a wide range of dU/dt. A dependence of the effect magnitude on the light intensity and spectrum is obtained. Possible physical mechanisms of this phenomenon are discussed.  相似文献   

15.
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L–1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.  相似文献   

16.
The influence of metallic electrodes on the properties of thin ferroelectric films is considered in the framework of the Ginzburg-Landau phenomenological theory. The contribution of the electrodes with different screening lengths l s of carriers in the electrode material is included in the free-energy functional. The critical temperature T cl , the critical thickness of the film, and the critical screening length of the electrode at which the ferroelectric phase transforms into the paraelectric phase are calculated. The Euler-Lagrange equation for the polarization P is solved by the direct variational method. The results demonstrate that the film properties can be calculated by minimizing the free energy, which has a standard form but involves the coefficient of the term P2. This coefficient depends not only on the temperature but also on the film thickness, the surface and correlation effects, and the electrode characteristics. The calculations of the polarization, the dielectric susceptibility, the pyroelectric coefficient, and the depolarization field show that the ferroelectric state of the film can be destroyed using electrodes from a material whose screening length exceeds a critical value. This means that the electrodes being in operation can induce a transition from the ferroelectric phase to the paraelectric phase. The quantitative criteria obtained indicate that the phase state and properties of thin ferroelectric films can be controlled by choosing the appropriate electrode material.  相似文献   

17.
A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0–1 atm, the NC thickness is smoothly varied in the range L = 140–1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.  相似文献   

18.
Spatial nonlocality (dispersion) of transport equations leads to a nonlinear dependence of the voltage drop U on the distance between the points of voltage measurement. For this reason, the results of conventional two-probe measurements of conductivity substantially depend on the relationship between the linear dimensions of the sample L and the characteristic length of spatial dispersion R of the generalized diffusion coefficient D(q, ω). This makes it possible to obtain information on the character of spatial nonlocality of D(q, ω) in the vicinity of the Anderson transition and, in particular, on the magnitude of the correlation multifractal dimension D2 of electron wave functions near the mobility edge.  相似文献   

19.
Features of the effect of Faraday rotation (the rotation of the radiation polarization plane) in a magnetic field of the D 1 line in Cs atomic vapor in a nanocell with the thickness L varying in the range of 80–900 nm have been analyzed. The key parameter is the ratio L/λ, where λ = 895 nm is the wavelength of laser radiation resonant with the D 1 line. The comparison of the parameters for two selected thicknesses L = λ and λ/2 has revealed an unusual behavior of the Faraday rotation signal: the spectrum of the Faraday rotation signal at L = λ/2 = 448 nm is several times narrower than the spectrum of the signal at L = λ, whereas its amplitude is larger by a factor of about 3. These differences become more dramatic with an increase in the power of the laser: the amplitude of the Faraday rotation signal at L = λ/2 increases, whereas the amplitude of the signal at L = λ almost vanishes. Such dependences on L are absent in centimeter-length cells. They are inherent only in nanocells. In spite of a small thickness, L = 448 nm, the Faraday rotation signal is certainly detected at magnetic fields ≥0.4 G, which ensures its application. At thicknesses L < 150 nm, the Faraday rotation signal exhibits “redshift,” which is manifestation of the van der Waals effect. The developed theoretical model describes the experiment well.  相似文献   

20.
The conductance G? and \(\overline {{G^{ - 1}}} \) resistance average over realizations of disorder have been calculated for various sizes of square lattices L. In contrast with different direction of change in the two quantities at percolation in lattices with the binary spread of conductances of links (g i = 0 or 1), it has been found that the mean conductance and resistance of lattices decrease simultaneously with an increase in L in the case of an exponential distribution of local conductances g i = exp(?kxi), where x i ∈ [0,1] are random numbers. When L is smaller than the disorder length L0 = bkv, G?(L) and \(\overline {{G^{ - 1}}} \)(L) are proportional to L?n with n = k/5 and k/6, respectively. A similar behavior is characteristic of the distributions of conductances of links, which simulate a transition between the open and tunneling regimes in semiconducting lattices of antidots created in a two-dimensional electron gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号