首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The combination of stable biorecognition elements and robust quantum dots (QDs) has the potential to yield highly effective reporters for bioanalyses. Llama-derived single domain antibodies (sdAb) provide small thermostable recognition elements that can be easily manipulated using standard DNA methods. The sdAb was self-assembled on dihydrolipoic acid (DHLA) ligand-capped CdSe–ZnS core–shell QDs made in our laboratory through the polyhistidine tail of the protein, which coordinated to zinc ions on the QD surface. The sdAb–QD bioconjugates were then applied in both fluorometric and surface plasmon resonance (SPR) immunoassays for the detection of ricin, a potential biothreat agent. The sdAb–QD conjugates functioned in fluoroimmunoassays for the detection of ricin, providing equivalent limits of detection when compared to the same anti-ricin sdAb labeled with a conventional fluorophore. In addition, the DHLA-QD–sdAb conjugates were very effective reporter elements in SPR sandwich assays, providing more sensitive detection with a signal enhancement of ∼10-fold over sdAb reporters and 2–4 fold over full sized antibody reporters. Commercially prepared streptavidin-modified polymer-coated QDs also amplified the SPR signal for the detection of ricin when applied to locations where biotinylated anti-ricin sdAb was bound to target; however, we observed a 4-fold greater amplification when using the DHLA-QD–sdAb conjugates in this format.  相似文献   

2.
In the study,we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection(CE-LIF),fluorescence spectrometry and fluorescence correlation spectroscopy(FCS) were used to characterize the QDs conjugates with antibody.We found that the QDs-antibody conjugates possessed high fluorescence,small hydrodynamic radii and good stability in aqueous solution.  相似文献   

3.
CdTe quantum dots (QDs) were synthesized in aqueous solution with 3-mercaptopropionic acid as the stabilizer. Chemically reduced bovine serum albumin (BSA) was used to modify the surface of the QDs. Experimental results showed that the denatured BSA (dBSA) could be effectively conjugated to the surface of CdTe QDs. Column chromatography was used to purify the conjugates and determine the optimal ratio of dBSA to QDs. Further experimental results showed that the conjugation of QDs by dBSA efficiently improved the photoluminescence quantum yield, the chemical stability of QDs and their stability against photobleaching. A facile and sensitive method for determination of silver(I) ions was proposed based on the fluorescence quenching of the dBSA–QDs. Under the optimal conditions, the relative fluorescence intensity decreased linearly with the concentration of the silver(I) ions in the range 0.08–10.66 μM. The detection limit was 0.01 μM. This study provides a new method for the detection of metal cations. Figure In this work, denatured BSA was used to modify the surface of CdTe QDs by a simple and rapid method. And the conjugates of dBSA-QDs were purified by column of Sephadex G-100. After the purification of the conjugates, the sensitivity was greatly increased as silver (I) ions probe.  相似文献   

4.
Semiconductor quantum dots (QDs) are very important luminescent nanomaterials with a wide range of potential applications. Currently, QDs as labeling probes are broadly used in bioassays, including immunoassay, DNA hybridization, and bioimaging, due to their excellent physical and chemical properties, such as broad excitation spectra, narrow and size‐dependent emission profiles, long fluorescence life time, and good photostability. The characterization of QDs and their conjugates is crucial for their wide bioapplications. CE has become a powerful tool for the separation and characterization of QDs and their conjugates. In this review, some CE separation models of QDs are first introduced, mainly including CZE, CGE, MEKC, and ITP. And then, some key applications, such as the measurements of size, surface charge, and concentration of QDs and the characterization of QDs conjugates (e.g. QD–protein, QD–DNA, QD–small molecule), are also described. Finally, future perspectives are discussed.  相似文献   

5.
Quantum dots (QDs) are widely used in the immune detection. Yet, the sensitivity and specificity of the immune detection are not satisfactory because the binding sites of QDs onto antibody (Ab) are often arbitrary and the influence of the large surface electronic potential energy of QDs on the directly conjugated Ab is nonnegligible. In this work, we provide a “flexible” coupling method, in which protein G (PG) is selected as the flexible bridge between the QDs and the Hepatitis B virus surface antibody (HBsAb), to improve the sensitivity and specificity of the fluoroimmunoassay compared to the directly covalent conjugation. Successful coupling of the HBsAb to our highly luminescent CdTe/CdS core/shell QDs is proven with Gel electrophoresis and atomic force microscopy (AFM). The assay results, based on the microelisa well plate as matrix to immobilize the sandwich structure, show that both sensitivity and specificity can be improved greatly through the flexible coupled QDs-PG-Ab conjugates.  相似文献   

6.
We demonstrate the use of a series of engineered, variable-length de novo polypeptides to discretely immobilize luminescent semiconductor nanocrystals or quantum dots (QDs) onto functional surfaces. The polypeptides express N-terminal dicysteine and C-terminal hexahistidine residues that flank a variable number (1, 3, 5, 7, 14, 21, 28, or 35) of core beta-strand repeats, with tyrosine, glutamic acid, histidine, and lysine residues located at the turns. Polypeptides have molecular weights ranging from 4 to 83 kDa and retain a rigid structure based on the antiparallel beta-sheet motif. We first use a series of dye-labeled polypeptides to test and characterize their self-assembly onto hydrophilic CdSe-ZnS QDs using fluorescence resonance energy transfer (FRET). Results indicate that peptides maintain their beta-sheet conformation after self-assembly onto the QD surfaces, regardless of their length. We then immobilize biotinylated derivatives of these polypeptides on a NeutrAvidin-functionalized substrate and use them to capture QDs via specific interactions between the peptides' polyhistidine residues and the nanocrystal surface. We found that each of the polypeptides was able to efficiently capture QDs, with a clear correlation between the density of the surface-tethered peptide and the capacity for nanocrystal capture. The versatility of this capture strategy is highlighted by the creation of a variety of one- and two-dimensional polypeptide-QD structures as well as a self-assembled surface-immobilized FRET-based nutrient sensor.  相似文献   

7.
CdS纳米晶与多肽分子相互作用研究   总被引:2,自引:0,他引:2  
陈旭东  王新波  范莉  杨大成 《化学学报》2005,63(17):1600-1606
研究了半导体CdS纳米晶的表面功能化及荧光光谱特性, 并利用静电/配位自组装方法实现了多肽和CdS纳米晶的生物无机偶联, 研究了纳米晶多肽偶联体系的荧光光谱以及多肽与CdS纳米晶之间的相互作用. 结果表明: 含巯基多肽对CdS纳米晶表面形成完善包覆, 消除CdS纳米晶表面缺陷, 使CdS纳米晶荧光增强; 含端氨基多肽使CdS纳米晶荧光出现先升后降趋势; 其余不含巯基和氨基的多肽均猝灭CdS纳米晶荧光, 猝灭机制属于形成化合物所引起的静态猝灭, 它们的结合常数约为2×104, 结合位点数约为0.87~1.00.  相似文献   

8.
Yang L  Li Y 《The Analyst》2006,131(3):394-401
In this study, we explored the use of semiconductor quantum dots (QDs) as fluorescence labels in immunoassays for simultaneous detection of two species of foodborne pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium. QDs with different sizes can be excited with a single wavelength of light, resulting in different emission peaks that can be measured simultaneously. Highly fluorescent semiconductor quantum dots with different emission wavelengths (525 nm and 705 nm) were conjugated to anti-E. coli O157 and anti-Salmonella antibodies, respectively. Target bacteria were separated from samples by using specific antibody coated magnetic beads. The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes. Fluorescent microscopic images of QD labeled E. coli and Salmonella cells demonstrated that QD-antibody conjugates could evenly and completely attach to the surface of bacterial cells, indicating that the conjugated QD molecules still retain their effective fluorescence, while the conjugated antibody molecules remain active and are able to recognize their specific target bacteria in a complex mixture. The intensities of fluorescence emission peaks at 525 nm and 705 nm of the final complexes were measured for quantitative detection of E. coli O157:H7 and S. Typhimurium simultaneously. The fluorescence intensity (FI) as a function of cell number (N) was found for Salmonella and E. coli, respectively. The regression models can be expressed as: FI = 60.6 log N- 250.9 with R(2) = 0.97 for S. Typhimurium, and FI = 77.8 log N- 245.2 with R(2) = 0.91 for E. coli O157:H7 in the range of cell numbers from 10(4) to 10(7) cfu ml(-1). The detection limit of this method was 10(4) cfu ml(-1). The detection could be completed within 2 hours. The principle of this method could be extended to detect multiple species of bacteria (3-4 species) simultaneously, depending on the availability of each type of QD-antibody conjugates with a unique emission peak and the antibody coated magnetic beads specific to each species of bacteria.  相似文献   

9.
δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF) in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA) within 15 min with efficiencies up to 450,000 plates/m.The in...  相似文献   

10.
Water-soluble CdTe quantum dots (QDs) and their conjugates with antibodies and antigenes were prepared by optimized procedures for applications in CE immunoassays. The QD size of 3.5 nm, excitation spectrum in the range of 300-500 nm, the maximum wavelength of the emission spectrum at 610 nm, quantum yield of 0.25 and luminescence lifetimes in the range of 3.6-43 ns were determined. The 0.1 M solution of TRIS/TAPS (pH 8.3) was found to be the optimum buffer for the separation of the antiovalbumin-ovalbumin immunocomplex from the free conjugates of QDs.  相似文献   

11.
Kim YS  Jurng J 《The Analyst》2011,136(18):3720-3724
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.  相似文献   

12.
Li H  Cao Z  Zhang Y  Lau C  Lu J 《The Analyst》2011,136(7):1399-1405
Quantum dots (QDs) have the potential to simplify the performance of multiplexed analysis. In this work, a novel protocol for performing a simultaneous dual-protein immunoassay, i.e. two lung cancer biomarkers, carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE), based on dual-color QDs, is described. First, two capture antibodies (both with biotin tags), two antigens and two detection antibodies were mixed together and the sandwich complexes were thus formed in the homogeneous solution, and then streptavidin coated polystyrene beads were directly added into the resultant system. Bead aggregation can be made self-limiting by controlling the shaker speed during the immunoassay. A distinct transition occurs between limited and complete aggregation as a function of the shaker speed during the immunoassay. Second, dual-color QDs with emission maxima at 525 and 655 nm were added after washing and reacted with the corresponding detection antibodies. Third, the bead-QD conjugates were dissociated in the dissociation buffer and then free QDs were directly used for the fluorescence detection of CEA and NSE. The results show that CEA and NSE could be sensitively determined with a common 96-well fluorescence plate reader and with equal detection limits down to the 1.0 ng mL(-1) level. Within the calibrated amount, the protocol had excellent precision within 0.53% for each target and was comparable in performance to commercial single-analyte ELISAs. Furthermore, the proposed method has been successfully applied to the determination of dual markers in real samples without cross-reaction, and a good correlation was achieved after comparison with the conventional assay for CEA and NSE in 25 human serum samples.  相似文献   

13.
Water-soluble quantum dots (QDs) were used to label goat anti-human immunoglobulin antibodies (Abs), and the labeling process was characterized by column purification. The QDs obtained in organic solvent were modified with mercaptoacetic acid (MAA) and became water-soluble. These water-soluble QDs were linked to the antibodies using the coupling reagents ethyl-3-(dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The linking process was shown to be effective by ultra-filter centrifugation and column purification. After comparing the quantities of Abs and water-soluble QDs involved in the linking reaction via column purification, it was found that a molar Abs:QD ratio of >1.2 resulted in most of the water-soluble QDs becoming covalently linked to the Abs. The circular dichroism (CD) spectra of Abs and QD–Ab conjugates were very similar to each other, indicating that the secondary structure of Abs remained largely intact after the conjugation. Finally, antigen (Ag)–antibody (Ab) recognition reactions perfomed on the surface of a glass slide showed that the conjugate retained the activity of Abs. This work lends support to the idea of linking biomolecules to QDs, and thus should aid the application of QDs to the life sciences. Figure Firstly in this work, the conjugates of QDs-Ab were separated from EDC&NHS in the column of Sephadex G-100(left up). Then the bioactivity of QDs-Ab was analyzed in the immunoassay (right) and the immunofluorescent signals were detected (left bottom) finally  相似文献   

14.
来守军  关晓琳 《化学进展》2011,23(5):941-950
量子点作为新型纳米发光材料备受关注,但由于光学稳定性和生物相容性的问题而在实际应用上受限。聚合物对量子点的修饰能够提供量子点合成的有效支撑基质,而且还可以改善量子点的稳定性和单分散性,进而可以拓展量子点应用于化学、物理以及生物学领域。基于聚合物修饰量子点的优势,本文简述了聚合物表面修饰量子点的方法、合成路线、步骤、特点以及发展现状。其中,双亲分子涂敷的量子点可以改善量子点的水溶性;多基配体包裹的量子点更具有稳定性和功能性;末端功能化聚合物表面修饰的量子点则可以合成更为先进功能的材料;胶封树枝状定域量子点具有单分散和优越发光特性。同时,还综述了各种表面修饰方法的最新研究进展,存在问题以及应用发展趋势。  相似文献   

15.
A relatively sensitive, specific, and photostable method for the detection of cytokeratin of cancer cells via conjugation with cadmium telluride quantum dots(CdTe QDs) was described. Water soluble CdTe QDs were conjugated to anti-pan-cytokeratin(CK) monoclonal antibody(MAb) through coupling reagent [1-ethyl-3-(3-dimethyla- mino propyl)carbodiimide, EDC] and the conjugates were purified by dialysis. The expression of pan CK protein in HepG2 cells was observed by immunocytochemistry and direct immunofluoresce...  相似文献   

16.
A detailed study into the optimization of carbodiimide-mediated coupling of antibodies (Ab) and quantum dots (QD) for use in cellular imaging has been undertaken. This involved the grafting of commercially available carboxyl-modified QDs (Evident Technologies "Lake Placid Blue" Evitag and eBioscience's eflour nanocrystals) with anti-Cdc8 Abs to produce conjugates with specific affinity for fission yeast tropomyosin Cdc8 protein. The water-soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was used to activate the QDs prior to their incubation with antibody, and a range of QD-carboxyl/EDC/Ab mole ratios were used in the experiments in attempts to optimize fluorescence and bioaffinity of the conjugate products (EDC to QD-carboxyl-600 nmol/15 pmol to 0.12 nmol/15 pmol and QD to Ab 120 pmol/24 pmol to 120 pmol/1.2 pmol). It was observed that a specific "optimum" ratio of the three reactants was required to produce the most fluorescent and biologically active product and that it was generated at alkaline pH 10.8. Increasing the ratio of Ab to QD produced conjugate which was less fluorescent while reducing the ratio of EDC to QD in the activation step led to increased fluorescence of product. Conjugates were tested for their possession of antibody by measurement of their absorption at OD(280 nm) and for their fluorescence by assay λ(max(em)) at 495 nm. A quantitative assay of the bioactivity of the conjugates was developed whereby a standardized amount of Cdc8 antigen was spotted onto nylon membranes and reacted with products from conjugation reactions in a sandwich-type colormetric assay The "best" conjugate was used in intracellular imaging of yeast Cdc8 protein and produced brighter, higher definition images of fixed yeast cell actin structure than a fluorescein-Ab conjugate routinely produced in our laboratory. The QD-Ab conjugate was also significantly more resistant to photobleaching than the fluorescein-Ab conjugate. Results from other experiments involving EDC, the water-soluble carbodiimide 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulphonate (CMC), and EDC.HCl have suggested a new reaction mechanism for EDC coupling under basic aqueous conditions. In summary, a robust understanding of commercial QD-COOH surface chemistry and the variables involved in the materials' efficient conjugation with a bioligand using carbidiimide has been obtained along with an optimized approach for Ab-QD conjugate production. A novel assay has been developed for bioassay of QD-Ab conjugates and a new mechanism for EDC coupling under basic aqueous conditions is proposed.  相似文献   

17.
Optical sensing polymer particles with tailored semiconductor nanocrystal (QD) loading are prepared by layer-by-layer deposition technique (LbL). Polyacrolein particles of 1.2 μm diameter are used as solid support for deposition of hydrophilic CdSe/ZnS nanocrystal/polyelectrolyte multilayers formed by electrostatic interactions. The pH-dependent fluorescence of QDs and pH-dependent conformations of polyelectrolytes, which likely passivate the surface state of nanocrystals, allow a creation of both mono- and multiplex coded polymer particles with pH-dependent fluorescence intensity. Bovine serum albumin (BSA) as outermost layer makes it possible to design the optical sensing polymer particles with reversibly responded fluorescence at pH variations. The fluorescence of such polymer particles with BSA outer layer is sensitive to copper(II) ion while the fluorescence of these particles is practically insensitive to the other divalent cations (Zn(2+), Ca(2+), Ba(2+), Co(2+), Mg(2+)). The detection limit of Cu(2+) is about 15 nM. Adaptation of LbL method to prepare QD-labeled polymer particles with enhanced complexity (e.g. several types of QDs, multiple biofunctionality) is expected to open new opportunities in biotechnological applications.  相似文献   

18.
We describe the synthesis of a series of four different ligands which are used to prepare hydrophilic, biocompatible luminescent quantum dots (QDs) and gold nanoparticles (AuNPs). Overall, the ligands are designed to be compact while still imparting a zwitterionic character to the NPs. Ligands are synthesized appended to a bidentate dihydrolipoic acid- (DHLA) anchor group, allowing for high-affinity NP attachment, and simultaneously incorporate tertiary amines along with carboxyl and/or hydroxyl groups. These are placed in close proximity within the ligand structure and their capacity for joint ionization imparts the requisite zwitterionic nature to the nanocrystal. QDs functionalized with the four different compact ligands were subjected to extensive physical characterization including surface charge, wettability, hydrodynamic size, and tolerance to a wide pH range or high salt concentration over time. The utility of the compact ligand coated QDs was further examined by testing of direct conjugation to polyhistidine-appended protein and peptides, aqueous covalent-coupling chemistry, and the ability to engage in F?rster resonance energy transfer (FRET). Conjugating cell penetrating peptides to the compact ligand coated QD series facilitated their rapid and efficient cellular uptake, while subsequent cytotoxicity tests showed no apparent decreases in cell viability. In vivo biocompatibility was also demonstrated by microinjecting the compact ligand coated QDs into cells and monitoring their stability over time. Inherent benefits of the ligand design could be extended beyond QDs as AuNPs functionalized with the same compact ligand series showed similar colloidal properties. The strong potential of these ligands to expand NP capabilities in many biological applications is highlighted.  相似文献   

19.
A sensitive optical method based on quantum dot (QD) technology is demonstrated for the detection of an important cancer marker, total prostate-specific antigen (TPSA) on a disposable carbon substrate surface. Immuno-recognition was carried out on a carbon substrate using a sandwich assay approach, where the primary antibody (Ab)-protein A complex covalently bound to the substrate surface, was allowed to capture TPSA. After the recognition event, the substrate was exposed to the biotinylated secondary Abs. After incubation with the QD streptavidin conjugates, QDs were captured on the substrate surface by the strong biotin-streptavidin affinity. Fluorescence imaging of the substrate surface illuminated the QDs, and provided a very sensitive tool for the detection of TPSA in undiluted human serum samples with a detection limit of 0.25 ng/mL. The potential of this method for application as a simple and efficient diagnostic strategy for immunoassays is discussed.  相似文献   

20.
The assembly kinetics of colloidal semiconductor quantum dots (QDs) on solid inorganic surfaces is of fundamental importance for implementation of their solid-state devices. Herein an inorganic binding peptide, silica binding QBP1, was utilized for the self-assembly of nanocrystal quantum dots on silica surface as a smart molecular linker. The QD binding kinetics was studied comparatively in three different cases: first, QD adsorption with no functionalization of substrate or QD surface; second, QD adsorption on QBP1-modified surface; and, finally, adsorption of QBP1-functionalized QD on silica surface. The surface modification of QDs with QBP1 enabled 79.3-fold enhancement in QD binding affinity, while modification of a silica surface with QBP1 led to only 3.3-fold enhancement. The fluorescence microscopy images also supported a coherent assembly with correspondingly increased binding affinity. Decoration of QDs with inorganic peptides was shown to increase the amount of surface-bound QDs dramatically compared to the conventional methods. These results offer new opportunities for the assembly of QDs on solid surfaces for future device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号