首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A firefly luciferase (LUC)‐based bioluminescent assay for total free fatty acids (FFA) is presented. It is based on LUC's capability of converting FFA into fatty acyl‐adenylates with consumption of adenosine 5′‐triphosphate (ATP). Since ATP is a cosubstrate in LUC's bioluminescent reaction, together with firefly d ‐luciferin (d ‐LH2) and atmospheric oxygen (O2), any reduction in the assay's ATP content will lead to a decrease in the bioluminescent signal, which is proportional to the amount of FFA. Using FFA mixtures containing myristic (14:0), palmitic (16:0), stearic (18:0), oleic (18:1) and arachidonic acid (20:4) in ethanol, the assay was optimized through statistical experimental design methodology, namely fractional factorial (screening) and central composite (optimization) designs. The optimized method requires 2 μL of sample per tube in a final reaction volume of 50 μL. It is linear in the concentration range from 1 to 20 μm , with limits of detection (LOD) and quantitation (LOQ) of 1.3 and 4.5 μm , respectively. The method proved to be simple to perform, demands low reagent volumes, it is sensitive and robust and may be adapted to high‐throughput screening.  相似文献   

2.
《Analytical letters》2012,45(10):881-892
Abstract

Firefly luciferase immobilized on sepharose 4B and cellophane filmis shown to retain as much as 20% of its initial activity and can be durably stored at 4O°C with no appreciable loss in its enzymatic activity. The application of the immobilized luciferase is described for ATP detection at concentrations ranging from 0.1 pM to 1 mM, as well as for activity determination of enzymes catalyzing ATP synthesis (pyruvatekinase) and ATP hydrolysis (ATP-ase). The same sample of luciferase immobilized on cellophane film was 7%.  相似文献   

3.
4.
热稳定生物素化荧光素酶的制备及其在焦测序中的应用   总被引:1,自引:0,他引:1  
新一代大规模焦测序技术需要稳定的可固定化的荧光素酶,为了制备热稳定性好且被生物素化的荧光素酶,本研究采用基因工程方法将生物素羧基载体蛋白C端87个氨基酸残基(BCCP87)与荧光素酶在大肠杆菌E.coli BL21(DE3)中进行融合表达,以实现菌体内直接表达生物素化的荧光素酶(BCCP-LUC);并对北美萤火虫(Photinus pyralis)荧光素酶基因进行了定点突变以增强其热稳定性;用链亲和素包被的磁珠对重组融合蛋白进行固定化,用于焦测序。实验结果表明:突变后的荧光素酶在50℃环境中仍具有活性;在43℃下10min活性保留大于80%,热稳定性明显增强。Western blot分析结果表明,荧光素酶能够在大肠杆菌内生物素化。用链亲和素包被的磁珠结合BCCP-LUC后具有较高活性(2.1×105RLU/μL Beads),经过多次洗涤活性无明显下降。采用微球固定的荧光素酶以及ATP硫酸化酶成功的进行了DNA序列的测定且定量准确,表明固定化的荧光素酶可以应用于焦测序中,为建立高通量大规模芯片焦测序技术提供有效、稳定的工具酶。  相似文献   

5.
Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small‐molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno‐associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d ‐luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH‐sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal.  相似文献   

6.
Luciferin‐regenerating enzyme (LRE) contributes to in vitro recycling of D‐luciferin. In this study, reinvestigation of the luciferase‐based LRE assay is reported. Here, using quick change site‐directed mutagenesis seven T‐LRE (Lampyris turkestanicusLRE) mutants were constructed and the most functional mutant of T‐LRE (T69R) was selected for this research and the effects of D‐ and L‐cysteine on T69R T‐LRE‐luciferase‐coupled assay are examined. Our results demonstrate that bioluminescent signal of T69R T‐LRE‐luciferase‐coupled assay increases and then reach equilibrium state in the presence of 5 mm D‐cysteine. In addition, results reveal that 5 mm D‐ and L‐cysteine in the absence of T69R T‐LRE cause a significant increase in bioluminescence intensity of luciferase over a long time as well as decrease in decay rate. Based on activity measurements, far‐UV CD analysis, ANS fluorescence and DLS (Dynamic light scattering) results, D‐cysteine increases the activity of luciferase due to weak redox potential, antiaggregatory effects, induction of changes in conformational structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE on luciferase bioluminescent intensity, the majority of increase in luciferase light output and time‐course originate from the direct effects of D‐cysteine on structure and activity of firefly luciferase.  相似文献   

7.
Cells and tissues are composed from atoms of chemical elements, some of which have two kinds of stable isotopes, magnetic and nonmagnetic ones. Not long ago, magnetic isotope effects (MIEs) have been discovered in experiments with cells enriched with magnetic or nonmagnetic isotopes of magnesium. These MIEs can stem from higher efficiency of the enzymes of bioenergetics in the cells enriched with magnetic magnesium isotope. In the studies of MIEs in biological systems, it is needed to monitor the ATP concentrations as the major energy source in cells. The most sensitive and rapid method of the ATP measurements is based on the use of the firefly luciferase–luciferin system. Since luciferase is the ATP-dependent enzyme and activated by Mg-ions, it is necessary to elucidate whether this enzyme is sensitive to magnetic field of the magnesium isotope’s nuclear spin. Herein we present the results of studying the effects of different isotopes of magnesium, magnetic 25Mg and nonmagnetic 24Mg and 26Mg, on bioluminescence spectra and enzymatic activity of firefly luciferase. It was shown, that neither kinetics of the bioluminescence signal nor the bioluminescence spectra manifest any statistically significant dependence on the type of magnesium isotope. So, no MIEs have been revealed in the luciferase-catalyzed oxidation of luciferin. It means that firefly luciferase bioluminescence can serve as the tool for search and studies of magnetic isotope effects in ATP-dependent enzyme reactions in biological systems, including the enzymatic synthesis and hydrolysis of ATP.  相似文献   

8.
Replacement of some hydrophobic solvent‐exposed residues in Lampyris turkestanicus luciferase with arginine increases thermostability of this enzyme. Herein, thermodynamic and kinetic of unfolding reactions of wild type (WT), E354R/356R, E354R/356R‐I232R and E354R/356R‐Q35R/L182R/I232R variants, has been investigated. Fluorescence and Far‐UV circular dichroism measurements using urea as a chemical denaturant indicated that the value of for all variants is greater than that of WT enzyme. Analysis of m‐values, as a measure of difference in the solvent accessible surface area between the native and denatured states of protein, revealed that higher stability of mutants is related to their higher degree of compactness in the folded state. Results of unfolding kinetic experiments showed that all variants have three‐exponential behavior in which they unfolded with three rate constants and corresponding amplitudes. Increasing the rate constants of fast unfolding phase in mutants relative to WT protein may be attributed to more compactness and more kinetic sensitivity of their folded state to urea. However, more population of WT protein was unfolded from fast unfolding phase. Results of this investigation highlight kinetic stability of luciferase via a slow rate of unfolding.  相似文献   

9.
In this study, we used sugars as stabilizing additives to improve the thermostability and to inhibit aggregation of firefly luciferase. The combination of sucrose and trehalose has a strong stabilizing effect on firefly luciferase activity and prevents its thermoinactivation. These additives can also increase optimum temperature. It has been shown that the presence of both sucrose and trehalose can inhibit thermal aggregation of firefly luciferase and decrease bioluminescence decay rate. In order to understand the molecular mechanism of thermostabilization, we investigated the effects of sucrose and trehalose combination on the secondary structure of luciferase by Fourier transform infrared spectroscopy. Minor changes in content of secondary structure of firefly luciferase are observed upon treatment with additives.  相似文献   

10.
Firefly luciferase catalyzes production of light from luciferin in the presence of Mg2+?CATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K m for ATP.  相似文献   

11.
Highlights? Biological and chemical traits are flagged in >1,000 drug side effects ? Mechanistic insights are gained for most of the phenotypes ? Chemical features can account for unspecific or intricate biological phenomena ? Blending chemistry and biology helps in anticipating adverse events  相似文献   

12.
从氨基酸代谢的基本内容出发,分析并整理了其在生物化学教学中的意义与教学要点,其中富有的各种生物化学过程也充满了趣味性,对于本科生教学是良好的素材。在举例阐述其多样性、复杂性、趣味性与启发性的基础上,讨论生物化学教学中氨基酸代谢相关内容,是一种将前沿科学融入基础生物化学教育的新探索。  相似文献   

13.
化学生物学新前沿——化学蛋白质组学   总被引:7,自引:0,他引:7  
周兴旺 《化学进展》2003,15(6):518-522
随着包括人类在内的主要模式生物的基因组计划的完成,生命科学的研究重心转向蛋白质组的研究--在对应基因组的整体蛋白质水平上系统研究调控细胞生命活动的蛋白质.化学蛋白质组学是化学生物学在后基因组时代的最新发展:化学蛋白质组学利用化学小分子为工具和手段,以基于靶蛋白质功能的新战略探测体内蛋白质组,是新一代的功能蛋白质组学.本文综述了化学蛋白质组学的最新进展、有关技术及其在生物医学和药物研发等方面的应用,并对化学蛋白质组学的发展趋势和前景进行了讨论.  相似文献   

14.
《Analytical letters》2012,45(18):2025-2034
Abstract

A highly sensitive bioluminescent assay of dehydrogenases was performed. NADH was produced by the catalytic action of alcohol and glucose-6-phosphate dehydrogenases and subsequently measured with high sensitivity by a bioluminescent assay using NAD (P) H : FMN oxidoreductase and luciferase from Photobacterium fischeri. The minimal amount of dehydrogenases that could be measured was 0.0055 amol (5.5 × 10?-21 mol).  相似文献   

15.
Firefly luciferase is a 62 kDa protein that produces a flash of light on the oxidation of luciferin in the presence of ATP, Oxygen and Mg2+. Luciferase has a broad range of applications for analytical purposes and in vivo imaging for nanosystem biology studies. However, the enzyme is highly susceptible to proteolytic degradation that reduces its half-life. Rate of proteolytic digestion between two members of luciferase family ( Photinus pyralis and Lampyris turkestanicus ) is compared. Proteolytic sensitivity of L. turkestanicus luciferase was found to be more than P. pyralis luciferase, due to higher rate of hydrolysis under identical conditions. Both luciferases showed more sensitivity to chymotrypsin than trypsin with different digestion pattern. Digestion of P. pyralis by trypsin produced some fragments which were found to be more resistant to further degradation, whereas in L. turkestanicus initial fragments subdigested by trypsin, like chymotrypsin effect on both luciferases. Furthermore, both luciferases become increasingly labile to proteolysis as the temperature increases. The rate of inactivation and the rate of degradation between luciferases were different in a specific time of incubation. Appearance of similar bands for both luciferases confirmed exposure of specific regions, in spite of structural differences.  相似文献   

16.
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.  相似文献   

17.
沈家骢  吴玉清 《化学进展》2007,19(12):1839-1843
化学与生物学的交叉与融合产生了新学科——化学生物学,开拓了化学和生物学研究的新领域,使人类得以从分子水平来阐释生命过程,揭示生命的奥秘。分子识别和组装是体系的构筑与功能集成的基础,也是自然界生物进行信息存贮、复制和传递的基础,以此来研究构筑具有特定生物学功能的超分子体系,对揭示生命现象和过程具有重要意义。本文结合我们的研究工作从(1)谷胱甘肽过氧化物酶(GPX)模拟与底物识别;(2)医用再生材料与活性支架;(3)类病毒颗粒的组装与解组装3个方面讨论了化学生物学中的识别与组装的意义。  相似文献   

18.
The investigation of the role of the electric field in systems of widespread interest employing computational techniques is an emerging area of research. The outcome of applying an oriented external electric field (OEEF) on the geometric and electronic properties of the chemically unique π-conjugated cyclic carbon ring compounds has been explored with density functional theory (DFT). Distinct changes in the structural and electronic features of such ring compounds are observed upon the application of OEEFs. Importantly, the calculations indicate that a mixed aliphatic-aromatic conjugated ring converts from a singlet to a triplet after the application of an OEEF, suggesting potential applications in optoelectronics for such molecules, without the need for photochemically induced change in the spin state. Furthermore, the influence of built-in local electric fields (LEFs) present in naturally occurring macrocyclic systems such as valinomycin has also been explored. Static and ab initio molecular dynamics (AIMD) calculations indicate that LEFs are the primary driving factor in determining the energetically favoured position of counter anions such as chloride (Cl) in the potassium (K+) and sodium (Na+) coordinated valinomycin macrocycle structures: they exist inside the cage in the case of K+ sequestration by valinomycin and outside for Na+. This divergence has been proposed to be the determining factor for the selectivity of the valinomycin macrocycle for binding a K+ cation over Na+.  相似文献   

19.
The sensitive BRET system for the homogeneous immunoassay of a low‐molecular weight antigen was developed using progesterone as an example. Two thermostable mutants of the Luciola mingrelica firefly luciferase (Luc)—the “red” mutant with λmax.em = 590 nm (RedLuc) and the “green” mutant with λmax.em = 550 nm (GreenLuc)—were tested as the donors. The water‐soluble Alexa Fluor 610× (AF) dye was selected as the acceptor because its two absorption maxima, located at 550 and 610 nm, are close to the bioluminescence maxima of the GreenLuc and RedLuc, respectively. The methods for the synthesis of the luciferase–progesterone (Luc–Pg) conjugate and the conjugate of the dye and the polyclonal antiprogesterone antibody (AF–Ab) were developed. Both conjugates retained their functional properties, had high antigen–antibody binding activity, and demonstrated a high BRET signal. The homogeneous immunoassay system based on the BRET from the firefly luciferase to the synthetic dye was established to assay progesterone as a model antigen. Optimization of the assay conditions, the composition of the reaction mixture, and the concentrations of the donor and the acceptor made it possible to reach the minimum detectable progesterone concentration of 0.5 ng mL?1.  相似文献   

20.
我国化学生物学研究新进展   总被引:1,自引:0,他引:1  
席真  陈鹏  刘磊  叶新山 《化学通报》2014,77(7):709-719
作为化学领域的一门新兴二级学科,化学生物学已经成为具有举足轻重作用的交叉研究领域,是推动未来生命和化学学科发展的重要动力。近年来,我国的化学生物学研究正在以前所未有的速度蓬勃发展,在基础建设、人才培养、研究经费支持等方面都有了长足的进步。尤其是以国家自然科学基金委"基于化学小分子探针的信号转导过程研究"重大研究计划为依托,我国的化学生物学工作者以小分子探针为工具,充分发挥化学与生命科学等多学科综合交叉的优势,对细胞信号转导中的重要分子事件和机理进行了深入的探索,在一些前沿方向上取得了突出的成绩,相关研究结果多次发表在顶级的国际期刊上。本文对近两年来我国化学生物学领域取得的突出进展加以归纳和介绍:(1)基于小分子化合物及探针的研究。利用有机化学手段,通过设计合成一系列多样化的小分子化合物,以这些探针为工具深入开展了细胞生理、病理活动的调控机制、细胞关键信号转导通路及重要靶标、抑制剂和标记物的发现、基于金属催化剂的活细胞生物分子激活等方面的研究;(2)以化学生物学技术为手段,着重发展了针对蛋白质、核酸和糖等生物大分子的合成、特异标记与操纵方法,用以揭示这些生物大分子所参与的生命活动的调控机制;(3)采用信号传导过程研究与靶标发现相结合,以实现"从功能基因到药物"的药物研发模式,发展了药物靶标功能确证与化合物筛选的联合研究策略;(4)以化学分析为手段,发展了在分子水平、细胞水平或活体动物水平上,获取生物学信息的新方法和新技术。这些研究成果极大地推动了我国化学生物学的进步。共引用63篇参考文献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号