首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in $\mathbb {R}^{2}$ and $\mathbb {R}^{3}$ . We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classical box-spline direction matrices. These non-separable band-limited definable functions are then used to construct non-separable band-limited wavelet tight frames via the unitary and oblique extension principles. However, these refinable functions cannot be used for constructing Riesz wavelets and orthonormal wavelets in low dimensions as they are not stable. Another construction scheme is then developed to construct stable refinable functions in low dimensions by using a special class of direction matrices. The resulting stable refinable functions allow us to construct a class of MRA-based non-separable band-limited Riesz wavelets and particularly band-limited orthonormal wavelets in low dimensions with small frequency support.  相似文献   

2.
In this paper we propose the generalized pseudo-Butterworth refinable functions which involve pseudo-splines of type I and II, Butterworth refinable functions, pseudo-Butterworth refinable functions, and almost all symmetric and causal fractional B-splines. Furthermore, the convergence of cascade algorithms associated with the new masks is proved, and Riesz wavelet bases in L 2(?) corresponding to the parameters are constructed. The regularity of the generalized pseudo-Butterworth refinable functions is also analyzed by Fourier analysis.  相似文献   

3.
A refinable function φ(x):ℝn→ℝ or, more generally, a refinable function vector Φ(x)=[φ1(x),...,φr(x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj(x−α):α∈ℤn, 1≤j≤r form an orthogonal set of functions in L2(ℝn). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multiwavelet bases of L2(ℝn). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors.  相似文献   

4.
We analyze the properties of a new class of totally positive refinable functions obtained from nonstationary subdivision schemes. We show that the corresponding system of the integer translates is linearly independent, satisfies a Whitney–Schoenberg condition, reproduces polynomials up to a certain degree and generates a multiresolution analysis. Finally, pre-wavelets and bases on the interval are constructed.  相似文献   

5.
This paper provides several constructions of compactly supported wavelets generated by interpolatory refinable functions. It was shown in [7] that there is no real compactly supported orthonormal symmetric dyadic refinable function, except the trivial case; and also shown in [10,18] that there is no compactly supported interpolatory orthonormal dyadic refinable function. Hence, for the dyadic dilation case, compactly supported wavelets generated by interpolatory refinable functions have to be biorthogonal wavelets. The key step to construct the biorthogonal wavelets is to construct a compactly supported dual function for a given interpolatory refinable function. We provide two explicit iterative constructions of such dual functions with desired regularity. When the dilation factors are larger than 3, we provide several examples of compactly supported interpolatory orthonormal symmetric refinable functions from a general method. This leads to several examples of orthogonal symmetric (anti‐symmetric) wavelets generated by interpolatory refinable functions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper, we construct stable wavelet bases with piecewise quadratic functions for certain Sobolev spaces on non-uniform meshes. These wavelets have small support with 4 or 6 non-zero coefficients. Furthermore, a simple method is developed for verifying the global stability of wavelets derived from refinable functions with a complicated structure.  相似文献   

7.
For refinable function-based affine bi-frames, nonhomogeneous ones admit fast algorithms and have extension principles as homogeneous ones. But all extension principles are based on some restrictions on refinable functions. So it is natural to ask what are expected from general refinable functions. In this paper, we introduce the notion of weak nonhomogeneous affine bi-frame(WNABF).Under the setting of reducing subspaces of L~2(R~d), we characterize WNABFs and obtain a mixed oblique extension principle for WNABFs based on general refinable functions.  相似文献   

8.
1.IntroductionItiswell--knownthatrefinablefunctionsplayanimportantroleinthestudyingofwavelet.Usually,onehopesthatrefinablefunctionshavesomeparticularpropertiessuchassmoothnessandintegrability.Inthisnote,thezerosofanintegrablerefinablefunctionareobtained.Inparticalarbyexamplesoneshowsthatthelinearspaceassociatingthetranslatesoverthelatticepointsofarefinablefunctioncouldincludepolynomialspaceofdegreehigherthanitssmoothorder.LetsbeapositiveintegerandletR'(resp.C')bethes-dimensionalreal(qgmplex)…  相似文献   

9.
Refinable functions with exponential decay arise from applications such as the Butterworth filters in signal processing. Refinable functions with exponential decay also play an important role in the study of Riesz bases of wavelets generated from multiresolution analysis. A fundamental problem is whether the standard solution of a refinement equation with an exponentially decaying mask has exponential decay. We investigate this fundamental problem by considering cascade algorithms in weighted L p spaces (1≤p≤∞). We give some sufficient conditions for the cascade algorithm associated with an exponentially decaying mask to converge in weighted L p spaces. Consequently, we prove that the refinable functions associated with the Butterworth filters are continuous functions with exponential decay. By analyzing spectral properties of the transition operator associated with an exponentially decaying mask, we find a characterization for the corresponding refinable function to lie in weighted L 2 spaces. The general theory is applied to an interesting example of bivariate refinable functions with exponential decay, which can be viewed as an extension of the Butterworth filters.  相似文献   

10.
We study the approximation properties of the class of nonstationary refinable ripplets introduced in Gori and Pitolli (2008). These functions are the solution of an infinite set of nonstationary refinable equations and are defined through sequences of scaling masks that have an explicit expression. Moreover, they are variation-diminishing and highly localized in the scale-time plane, properties that make them particularly attractive in applications. Here, we prove that they enjoy Strang-Fix conditions, convolution and differentiation rules and that they are bell-shaped. Then, we construct the corresponding minimally supported nonstationary prewavelets and give an iterative algorithm to evaluate the prewavelet masks. Finally, we give a procedure to construct the associated nonstationary biorthogonal bases and filters to be used in efficient decomposition and reconstruction algorithms. As an example, we calculate the prewavelet masks and the nonstationary biorthogonal filter pairs corresponding to the C 2 nonstationary scaling functions in the class and construct the corresponding prewavelets and biorthogonal bases. A simple test showing their good performances in the analysis of a spike-like signal is also presented.  相似文献   

11.
Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the smoothness properties of multivariate refinable functions in Sobolev spaces. We characterize the optimal smoothness of a multivariate refinable function in terms of the spectral radius of the corresponding transition operator restricted to a suitable finite dimensional invariant subspace. Several examples are provided to illustrate the general theory.

  相似文献   


12.
A construction of interpolating wavelets on invariant sets   总被引:8,自引:0,他引:8  
We introduce the concept of a refinable set relative to a family of contractive mappings on a metric space, and demonstrate how such sets are useful to recursively construct interpolants which have a multiscale structure. The notion of a refinable set parallels that of a refinable function, which is the basis of wavelet construction. The interpolation points we recursively generate from a refinable set by a set-theoretic multiresolution are analogous to multiresolution for functions used in wavelet construction. We then use this recursive structure for the points to construct multiscale interpolants. Several concrete examples of refinable sets which can be used for generating interpolatory wavelets are included.

  相似文献   


13.
Construction of biorthogonal wavelets from pseudo-splines   总被引:4,自引:0,他引:4  
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10(2) (2001) 163–181], and their properties were extensively studied by Dong and Shen in [Pseudo-splines, wavelets and framelets, 2004, preprint]. It was further shown by Dong and Shen in [Linear independence of pseudo-splines, Proc. Amer. Math. Soc., to appear] that the shifts of an arbitrarily given pseudo-spline are linearly independent. This implies the existence of biorthogonal dual refinable functions (of pseudo-splines) with an arbitrarily prescribed regularity. However, except for B-splines, there is no explicit construction of biorthogonal dual refinable functions with any given regularity. This paper focuses on an implementable scheme to derive a dual refinable function with a prescribed regularity. This automatically gives a construction of smooth biorthogonal Riesz wavelets with one of them being a pseudo-spline. As an example, an explicit formula of biorthogonal dual refinable functions of the interpolatory refinable function is given.  相似文献   

14.
Approximation by translates of refinable functions   总被引:23,自引:0,他引:23  
Summary. The functions are refinable if they are combinations of the rescaled and translated functions . This is very common in scientific computing on a regular mesh. The space of approximating functions with meshwidth is a subspace of with meshwidth . These refinable spaces have refinable basis functions. The accuracy of the computations depends on , the order of approximation, which is determined by the degree of polynomials that lie in . Most refinable functions (such as scaling functions in the theory of wavelets) have no simple formulas. The functions are known only through the coefficients in the refinement equation – scalars in the traditional case, matrices for multiwavelets. The scalar "sum rules" that determine are well known. We find the conditions on the matrices that yield approximation of order from . These are equivalent to the Strang–Fix conditions on the Fourier transforms , but for refinable functions they can be explicitly verified from the . Received August 31, 1994 / Revised version received May 2, 1995  相似文献   

15.
For refinable function-based affine bi-frames, nonhomogeneous ones admit fast algorithms and have extension principles as homogeneous ones. But all extension principles are based on some restrictions on refinable functions. So it is natural to ask what are expected from general refinable functions. In this paper, we introduce the notion of weak nonhomogeneous affine bi-frame (WNABF). Under the setting of reducing subspaces of L 2(R d ), we characterize WNABFs and obtain a mixed oblique extension principle for WNABFs based on general refinable functions.  相似文献   

16.
Refinable function-based affine frames and affine bi-frames have been extensively studied in the literature. All these works are based on some restrictions on refinable functions. This paper addresses what are expected from two general refinable functions. We introduce the notion of weak (quasi-) affine bi-frame; present a refinable function-based construction of weak (quasi-) affine bi-frames; and obtain a fast algorithm associated with weak affine bi-frames. An example is also given to show that our construction is optimal in some sense.  相似文献   

17.
Typical constructions of wavelets depend on the stability of the shifts of an underlying refinable function. Unfortunately, several desirable properties are not available with compactly supported orthogonal wavelets, e.g., symmetry and piecewise polynomial structure. Presently, multiwavelets seem to offer a satisfactory alternative. The study of multiwavelets involves the consideration of the properties of several (simultaneously) refinable functions. In Section 2 of this article, we characterize stability and linear independence of the shifts of a finite refinable function set in terms of the refinement mask. Several illustrative examples are provided. The characterizations given in Section 2 actually require that the refinable functions be minimal in some sense. This notion of minimality is made clear in Section 3, where we provide sufficient conditions on the mask to ensure minimality. The conditions are shown to be necessary also under further assumptions on the refinement mask. An example is provided illustrating how the software package MAPLE can be used to investigate at least the case of two simultaneously refinable functions.  相似文献   

18.
In areas of geometric modeling and wavelets, one often needs to construct a compactly supported refinable function φ which has sufficient regularity and which is fundamental for interpolation [that means, φ(0)=1 and φ(α)=0 for all α∈ Z s ∖{0}].
Low regularity examples of such functions have been obtained numerically by several authors, and a more general numerical scheme was given in [1]. This article presents several schemes to construct compactly supported fundamental refinable functions, which have higher regularity, directly from a given, continuous, compactly supported, refinable fundamental function φ. Asymptotic regularity analyses of the functions generated by the constructions are given.The constructions provide the basis for multivariate interpolatory subdivision algorithms that generate highly smooth surfaces.
A very important consequence of the constructions is a natural formation of pairs of dual refinable functions, a necessary element in constructing biorthogonal wavelets. Combined with the biorthogonal wavelet construction algorithm for a pair of dual refinable functions given in [2], we are able to obtain symmetrical compactly supported multivariate biorthogonal wavelets which have arbitrarily high regularity. Several examples are computed.  相似文献   

19.
The stability is an expected property for refinable functions, which is widely considered in the study of refinement equations. Instead of studying the stability of entries of refinable vectors, we study the stability of refinable vectors themselves where they are considered as elements of super Hilbert spaces. We call this kind of stability the vector-stability. We give a necessary and sufficient condition for refinable vectors to be vector-stable. We also give an example to illustrate the difference between two types of stability.  相似文献   

20.
In this paper, we investigate the smoothness of multivariate refinable functions with infinitely supported masks and an isotropic dilation matrix. Using some methods as in [R.Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999) 4089–4112], we characterize the optimal smoothness of multivariate refinable functions with polynomially decaying masks and an isotropic dilation matrix. Our characterizations extend some of the main results of the above mentioned paper with finitely supported masks to the case in which masks are infinitely supported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号