首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen JL 《Electrophoresis》2006,27(4):729-735
A synthetic coppermesogenic polymer is prepared and then covalently bonded to the siloxane-based deactivated column as the stationary phases of open-tubular CEC with essentially high phase ratio. The EOF generated from the modified phase is surveyed through conventional aqueous buffers and hydroorganic mobile phases. Zeta potentials, which are computed from the EOF data and the ratio of dielectric constant to viscosity, are plotted as a function of pH, ionic molarity, and compositional range. These plots responsible for the electroosmotic characteristic of the bonded phases are found to be like those of bare fused-silica or deactivated columns through decreasing or increasing the ACN content in the mobile phase, respectively. This two-phase characteristic is basically derived from the polymeric configuration with carboxylato ligands attached onto the polysiloxane backbone. Phthalates and amino acids are suitable probes to examine the two phenomena, more-polar and less-polar mediums, respectively, and to judge whether the chromatographic retention is the major source of separation mechanism. With the mixing modes of Lewis acid-base interaction, dispersive force, and shape discrimination, the chromatographic partition adequately accomplishes the uneasily resolved separations by only CZE mode, although the electrophoretic migration is truly somewhat involved.  相似文献   

2.
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.  相似文献   

3.
This work presents the application of membrane technology for the fabrication of stationary phase for CEC columns using the technique based on phase inversion of polymer solution. A blend of polyimide P84 and sulphonated poly(ether ether ketone was processed via immersion precipitation dry‐wet spinning into small‐bore porous fiber. The morphology, zeta potential, and performance of the porous structure in the CEC separation were investigated. Noncharged molecules (as markers of the electroosmotic flow) and small organic compounds were injected into the column, driven under the application of voltage, and detected on the electropherogram. The proof of concept of applying porous membrane structure as stationary phase for CEC was shown and possible optimization to improve efficiency and selectivity was suggested.  相似文献   

4.
This review examines the most recent innovations made to achieve high performance in open-tubular capillary electrochromatography (OT-CEC) separations, focusing on the ingenious chemical and physical solutions made to increase the surface area and equip the stationary phase with exploitable selectivity. Among the approaches taken are chemically bonded ligands, etching with chemical bonding, sol-gels, molecularly imprinted polymers, porous layers, physically attached or adsorbed phases, and nanoparticle coatings. Particularly noteworthy are modern developments with macrocyclic receptor ligands, nanoparticles and open channel electrochromatography on-chip.  相似文献   

5.
Separation of hydroxy acid enantiomers was achieved by using capillary electrochromatography (CEC) employing a chiral stationary phase (CSP) based on MDL 63,246 (Hepta-Tyr), a macrocyclic antibiotic of the teicoplanin family. The chiral selector was chemically bonded to 5 num diol-modified silica particles and the CSP mixed with amino silica (3:1 w/w) was packed into a 75 num ID fused-silica capillary. The CEC experiments were carried out by using an aqueous reversed-phase mode for the enantiomeric resolution of hydroxy acid compounds. Good enantioresolution was achieved for mandelic acid (MA), m-hydroxymandelic acid (m-OH-MA), p-OH-MA, and 3-hydroxy-4-methoxymandelic acid (3-OH-4-MeO-MA). The CEC system was less enantioselective towards 2-phenyllactic acid (2-PhL) and 3-PhL while mandelic acid methyl ester (MA-Et-Est) enantiomers were not resolved. Several experimental parameters, such as organic solvent type and concentration, buffer pH, capillary temperature, on enantioresolution factor, retention time, and retention factor were studied.  相似文献   

6.
A novel chiral group functionalized metal-organic framework, Cyclodextrin-NH-MIL-53, was synthesized and modified on the inner wall of a capillary column via a post-synthetic process. The prepared chiral metal-organic framework was utilized as a chiral capillary stationary phase and used in an open-tubular capillary electrochromatography method to enantioseparate several racemic amino acids. Excellent enantioseparation of five pairs of enantiomers was obtained in this chiral separation system (Resolutions of D/L-Alanine = 16.844, D/L-Cysteine = 3.617, D/L-Histidine = 9.513, D/L-Phenylalanine = 8.133, and D/L-Tryptophan = 2.778). The prepared Cyclodextrin-NH-MIL-53 and the Cyclodextrin-NH-MIL-53-based capillary columns were characterized by scanning electron microscopy, X-ray diffraction, Fourie-transform infrared spectroscopy, and circular dichroism. The chiral capillary electrochromatography conditions, such as separation conditions, amount of Cyclodextrin-NH-MIL-53, and electroosmotic flow, were optimized. This research is estimated to present a novel insight and method for the design and use of metal-organic framework-based capillaries for enantioseparation.  相似文献   

7.
The feasibility of using capillary columns equipped with silica frits and packed with a polymer-based anion exchanger (Dionex AS9-HC) for CEC separations of inorganic anions has been investigated. Experiments using a conventional 25 cm packed bed, and mobile phase flow that is a combination of hydrodynamic and electroosmotic flow were used to demonstrate that by varying the applied voltage (electrophoresis component) or the concentration of the competing ion in the mobile phase (ion-exchange component), considerable changes in the separation selectivity could be obtained. Using an artificial neural network, this separation system was modelled and the results obtained used to determine the optimum conditions (9 mM perchlorate and −10 kV) for the separation of eight inorganic anions. When a short (8 cm) packed bed was used, with detection immediately following the packed section, the separation of eight test analytes in under 2.2 min was possible using pressure-driven flow and a simple step voltage gradient. A more rapid separation of these analytes was obtained by only applying high voltage (−30 kV), where many of the same analytes were separated in less than 20 s and with a different separation selectivity to that obtained in conventional ion-exchange or capillary electrophoresis separations.  相似文献   

8.
Carboxylic multi-walled carbon nanotubes (c-MWNT) have been immobilized into a fused-silica capillary for capillary electrochromatography. The c-MWNT were successfully incorporated after the silanization and coupling with glutaraldehyde on the inner surface of the capillary. The electrochromatographic features of the c-MWNT immobilized stationary phase have been evaluated for the analysis of different compounds of pharmaceutical interest. The results indicated high electrochromatographic resolution, good capillary efficiency and retention factors. In addition, highly reproducible results between runs, days and capillaries were obtained.  相似文献   

9.
Separation of enantiomers was performed by applying packed capillary electrochromatography (CEC). Fused-silica capillaries of different lengths with an inner diameter of 100 microm were packed with a cellulose derivative immobilized onto macroporous silica gel. Parameters such as content of modifier in the mobile phase, concentration and pH of the buffer were varied for a set of test capillaries to determine their influence on enantioselectivity. In packed CEC the highest influence on resolution of the test racemates was found by changing the acetonitrile content, while variation of the buffer concentration mostly affects the electroosmotic velocity. The performance of packed CEC and nano-LC was also compared. Packed CEC showed much better column efficiency and enantioselectivity under similar flow/electroosmotic velocity.  相似文献   

10.
Norton D  Shamsi SA 《Electrophoresis》2008,29(10):2004-2015
The preparation and characterization of a novel lithocholic acid (LCA)-based liquid crystalline (LC) stationary phase (SP) suitable for application in packed-column CEC and CEC coupled to MS is described. The extent of bonding reactions of LCA-SP was assessed using 1H-NMR, 13C-NMR and elemental analysis. This characterization is followed by application of the LCA-SP for separation of beta-blockers, phenylethylamines (PEAs), polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Using the optimum mobile phase operating conditions (pH 3.0-4.5, 10 mM ammonium acetate, 85% v/v ACN), a comparison of the chromatographic ability of the aminopropyl silica phase vs. the LCA-bonded phase was conducted. The results showed improved selectivity for all test analytes using the latter phase. For example, the CEC-MS of beta-blockers demonstrated that the LCA-bonded phase provides separation of six out of seven beta-blockers, whereas the amino silica phase provides four peaks of several co-eluting beta-blockers. For the CEC-MS analysis of PEAs, the LCA-bonded phase showed improved resolution and different selectivity as compared to the aminopropyl phase. An evaluation of the retention trends for PEAs on both phases suggested that the PEAs were retained based on varying degree of hydroxyl substitution on the aromatic ring. In addition, the MS characterization shows several PEAs fragment in the electrospray either by loss of an alkyl group and/or by loss of H2O. Finally, the LCA-bonded phase displayed significantly higher separation selectivity for PAHs and PCBs as compared to the amino silica phase.  相似文献   

11.
吸附固定相开管毛细管电色谱方法的建立(英文)   总被引:3,自引:0,他引:3  
刘震  邹汉法  叶明亮  倪坚毅  张玉奎 《色谱》1999,17(3):245-248
 首次将管壁吸附作用作为开管毛细管电色谱固定相制备的推动力,成功地建立了称为“吸附固定相开管毛细管电色谱”的一种新方法。原理是:选择合适的条件,让荷正电的化合物在毛细管管壁上充分吸附,直接用吸附层作为固定相。目前,已有数类化合物被用作固定相物质,其中包括阳离子表面活性剂如十六烷基三甲基溴化铵(CTAB)、碱性蛋白质如溶菌酶和细胞色素C、碱性小肽如赖氨酸-酪氨酸和赖氨酸-丝氨酸-酪氨酸、以及碱性氨基酸如L-赖氨酸。CTAB吸附固定相用于分离电中性化合物,其它吸附固定相用于手性分离。  相似文献   

12.
Li M  Liu X  Jiang F  Guo L  Yang L 《Journal of chromatography. A》2011,1218(23):3725-3729
Enantioselective open-tubular CEC (OTCEC) with thiolated β-CD modified gold nanoparticles (CD-GNPs) as stationary phase was developed. The enantioselective OT capillary column was fabricated by electrostatic assembly of poly(diallydimethylammonium chloride) (PDDA) followed by self-adsorption of negatively charged CD-GNPs. The enantioselective capillary column has a steady EOF mobility over a wide pH range of 3.0 to 9.2 (RSD 4.8%), and is quite stable over 240 min with very good column to column reproducibility. Efficient enantioseparation of the presented method was demonstrated by analyzing three drug enantiomers. Our results show that the column exhibits good run-to-run repeatability for enantioseparations and can maintain the enantioselectivity for more than 1 month if the column was stored in CD-GNPs solution at 4 °C.  相似文献   

13.
Since some metal-organic cages (MOCs) have been synthesized in past several years, the applications of MOCs such as drug delivery, molecular recognition, separation, catalysis, and gas storage, etc. have been witnessed with a significant increase. However, to the best of our knowledge, so far no one has used MOCs as chiral stationary phase to separate chiral compounds in CEC. In this study, three MOCs were developed as the stationary phase for CEC separation of enantiomers. The MOCs coated capillary column showed good chiral recognition ability for some chiral compounds, including amine, alcohols, ketone, etc. The influence of buffer concentration, applied voltage, pH of buffer solution on the chiral separations was also investigated. The RSDs of run-to-run, day-to-day, and column-to-column for retention time were 2.1-4.67%, 1.2-4.36%, and 3.62-6.43%, respectively. This work reveals that the chiral MOCs material is feasible for the enantioseparation in CEC.  相似文献   

14.
This work deals with investigations on the enantioseparation of glycyl-dipeptides by capillary electrochromatography (CEC) on a capillary packed with teicoplanin aglycone immobilized on 3.5 μm silica gel. The results were compared to those obtained with micro-HPLC using the same chiral stationary phase. Polar organic and reversed-phase mode were checked, whereby the latter showed better results. Out of 12 glycyldipetides investigated, all compounds showed baseline separation with Rs values up to 20. Plate numbers were in the range of 10 000–300 000/m. The choice of organic modifier was found to be crucial. While methanol increased retention time, acetonitrile reduced it. A ternary mixture of ethanol–acetonitrile–aqueous triethylamine acetate solution pH 4.1 was found to be a useful compromise, providing excellent resolution with retention times less than 25 min. Efficiency and resolution were generally found to be higher in CEC than with micro-HPLC.  相似文献   

15.
A multi‐functional separation column modified with 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane was developed for open tubular capillary electrochromatography. This functional hydrophilic triamine‐bonded open tubular column could generate both anodic and cathodic EOF. When the pH of the running buffer was below 5.3 (30% 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane, v/v), the anodic EOF was exhibited, which greatly prevented the undesired adsorptions of basic proteins on the capillary inner wall. Favorable separation of four basic proteins (viz. trypsin, ribonuclease A, lysozyme and cytochrome c) was successfully achieved at pH 3.5 of 10 mmol/L phosphate buffer. The column efficiencies of proteins were in the range from 87 000 to 110 000 plates/m, and the RSD values for migration time of four proteins were less than 1.2% (run‐to‐run, n=5). The ionic analytes were also separated efficiently in the co‐electroosmotic mode. The average efficiencies ranged from 81 000 to 190 000 plates/m for seven aromatic acids and 186 000–245 000 plates/m for four nucleoside monophosphates, respectively, and good capillary column repeatability was gained with RSD of the migration time not more than 3.0%. The triamine‐bonded open tubular capillary column is favorable to be an alternative functional medium for the further analysis of basic proteins and anionic analytes.  相似文献   

16.
Enantiomeric separations in capillary electrochromatography (CEC) carried out using a continuous-bed chiral stationary phase (CSP) based on the macrocyclic antibiotic, vancomycin, is presented. The continuous beds were prepared from methacryloxypropyl modified fused silica capillaries (100 microm ID) by in situ copolymerization of N-(hydroxymethyl)acrylamide and piperazine diacrylamide with vinyl sulfonic acid comonomer used to introduce ionic functionality and thus a strong electroosmotic flow (EOF). The CSP was subsequently prepared by immobilizing the vancomycin stationary phase by reductive amination. Preliminary results have indicated that an extremely strong EOF is obtained in both the nonaqueous polar organic (15.2 x 10(-5) cm2 V(-1) s(-1) and the aqueous reversed-phase modes of operation (8.5 x 10(-5) cm2 V(-1) s(-1)). Enantioselectivity was obtained for four racemic compounds, the best of which was in the case of thalidomide which was separated in 10 minutes with high resolution (Rs = 2.5) and efficiency (120,000 plates meter(-1)) values.  相似文献   

17.
The macrocyclic antibiotic, vancomycin, is covalently bonded to LiChrospher diol silica packed columns and evaluated in capillary electrochromatography (CEC) both in the reversed-phase and polar organic mode. Initially, capillaries were packed with 5 microm LiChrospher 100 A diol silica and evaluated in CEC with a reversed-phase biphenyl-pyrene achiral test resulting in resolution and efficiency values of ca. 2.5 and 100000 plates meter(-1), respectively. Repeatability for this test (resolution and efficiency) was also examined and found to be acceptable for both run-to-run (n=5, 0.74% and 1.5%) and column-to-column (n=5, 3.4% and 9.0%), respectively. Similar results were obtained when the 10 microm LiChrospher 1000 A diol silica was examined with the exception of efficiency, where a reduced plate height value of four times lower was obtained compared to the 100 A material. A simple three step in-situ vancomycin immobilisation procedure was subsequently carried out on these packed diol columns. Selectivity was obtained for thalidomide enantiomers on this vancomycin chiral stationary phase in reversed-phase CEC with resolution and efficiency values of ca. 2.5 and 80000 plates meter(-1), with acceptable repeatability (n=8) 0.9% and 3.0%, respectively. Selectivity was also obtained for thalidomide enantiomers on this phase in the polar organic mode with resolution and efficiency values of ca. 2.5 and 120000 plates meter(-1), with acceptable repeatability (n=7) 0.9% and 2.0%, respectively. It was possible to deduce from a chemometric design carried out for evaluating the mobile phase component effects that organic modifier ratio, MeOH/MeCN, played a significant role in controlling both resolution and efficiency. It was also possible to separate a number of basic analytes including four beta-adrenergic blocking agents in the polar organic mode albeit with lower resolution and efficiency values, ca. 1.5 and 45000 plates meter(-1), respectively.  相似文献   

18.
Zhu Y  Zhou C  Qin S  Ren Z  Zhang L  Fu H  Zhang W 《Electrophoresis》2012,33(2):340-347
A novel open‐tubular capillary electrochromatography (OT‐CEC) with modified core/shell magnetic nanoparticles coating as stationary phase was introduced using external magnetic force to fix magnetic nanoparticles. The magnetic nanoparticles coating inside the capillary columns could be easily regenerated by removing and re‐applying the external magnetic field. Magnetic field intensity, concentration and flow rate of nanoparticles suspension were investigated to achieve simple and stable preparation. Mixture of five organic acids was used as the marker sample to evaluate the OT‐CEC system, and the relative column efficiency of anthranilic acid reaches 220 000 plates/m. The excellent within‐column and between‐column repeatability has been testified with the RSDs of retention time of less than 1.51 and 5.29%, respectively. The aqueous extract of rhizoma gastrodiae was analyzed by the OT‐CEC system, and 23 peaks were eluted in 30 min. Compared with conventional open‐tubular capillary column, this new system shows faster separation speed and higher column efficiency from the larger surface area of nanoparticles. It has great potential in the method development for the analysis of complex samples, since magnetic coating can effectively prolong the column life by expediently replacing stationary phase to eliminate the pollution or irreversible adsorption.  相似文献   

19.
DNA oligonucleotides that form G-quartet structures were used as stationary phase reagents for separation of bovine milk proteins, including alpha-casein, beta-casein, kappa-casein, alpha-lactalbumin and beta-lactoglobulin. Both artificial protein mixtures and a skim milk sample were analyzed. The separations were performed using open-tubular capillary electrochromatography, in which the oligonucleotides were covalently attached to the inner surface of a fused-silica capillary. Better resolution was achieved using the G-quartet-coated capillaries than was achieved using either a bare capillary or a capillary coated with an oligonucleotide that does not form a G-quartet structure. A 4-plane G-quartet-forming stationary phase was able to resolve three peaks for alpha-casein and to detect thermal denaturation of the proteins in the milk sample. The results suggest that G-quartet stationary phases could be used to separate very similar protein structures, such as those arising from genetic variations or post-translational modifications.  相似文献   

20.
Enantiomeric separation of chiral pharmaceuticals is carried out in aqueous and non-aqueous packed capillary electrochromatography (CEC) using a teicoplanin chiral stationary phase (CSP). Capillaries were slurry packed with 5 microm 100-A porous silica particles modified with teicoplanin and initially evaluated using a non-aqueous polar organic mode system suitability test for the separation of metoprolol enantiomers (Rs = 2.3 and 53000 plates m(-1)). A number of pharmaceutical drugs were subsequently screened with enantioselectivity obtained for 25 racemic solutes including examples of neutral, acidic and basic molecules such as coumachlor (Rs = 3.0 and 86000 plates m(-1)) and alprenolol (Rs = 3.3 and 135000 plates m(-1)) in reversed-phase and polar organic mode, respectively. A statistical experimental design was used to investigate the effects of non-aqueous polar organic mobile phase parameters on the CEC electroosmotic flow, resolution and peak efficiency for two model solutes. Results primarily indicated that higher efficiency and resolution values could be attained at higher methanol contents which is similar to findings obtained on this phase in liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号