首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-fused isophlorin 3 and its tautomeric phlorin forms 4 and 5, the new constitutional isomers of porphyrin which preserve the basic skeleton of their maternal N-fused porphyrin, have been identified in the course of investigation of phosphorus insertion into N-fused porphyrin 2. N-fused porphyrin reacts with PCl3 in toluene yielding phosphorus(V) N-fused isophlorin 3-P wherein the macrocycle acts as a trianionic tridentate ligand. The identical product has been formed in the reaction of N-confused porphyrin 1 and POCl3 or PCl3. The coordinating environment of phosphorus(V) in 3-P as determined by X-ray crystallography resembles a distorted trigonal pyramid with the nitrogen atoms occupying equatorial positions with the oxygen atom lying at the unique apex. Phosphorus(V) is significantly displaced by 0.732(1) A from the N3 plane. The P-N distances are as follows P-N(22) 1.664(2), P-N(23) 1.645(2), and P-N(24) 1.672(2). All P-N(pyrrolic) bond lengths are markedly shorter than the P-N distances in phosphorus porphyrins. 3-P is susceptible to proton addition at the inner C(9) carbon atom, yielding aromatic 4-P. The modified macrocycle acts as a dianionic ligand and allows the efficient 18 pi-electron delocalization pathway. Two stereoisomers affording the syn (4-P syn) and anti (4-P anti) location of the H(9) atom with respect to the oxygen atom of the PO unit have been identified by (1)H NMR. A regioselective reduction of free base N-fused porphyrin 2 with NaBH4 yielded a nonaromatic isomer of 4, that is, N-fused phlorin 5 due to an addition of a hydride to the C(15) carbon and a proton to one of the pyrrolic nitrogens. The isomer 5 reacts with PCl 3 yielding phosphorus(V) fused isophlorin 3-P. Density functional theory has been applied to model the molecular and electronic structure of porphyrin isomers 3, 4, and 5 and their phosphorus(V) complexes.  相似文献   

2.
Brothers PJ 《Inorganic chemistry》2011,50(24):12374-12386
Complexes of boron with ligands containing pyrrolyl motifs are surveyed. The ligands range from simple pyrrolyl groups to dipyrroles and linear terpyrroles. Macrocyclic ligands include tripyrroles, which encompass subphthalocyanines, subporphyrins, subtriazaporphyrins, and subtribenzoporphyins, the familiar tetrapyrroles porphyrin and corrole but also N-confused and -fused porphyrins, and expanded porphyrins containing up to eight pyrroles. The role of boron in these compounds depends on the nature of the ligand. Boron acts as a Lewis acid center in simple boron pyrrolyl compounds, and as a structure-directing and templating agent in the cyclic terpyrroles and some of the expanded porphyrins. The difluorboron dipyrrins are well-known as fluorescent dyes. Boron porphyrins and corroles are unusual in containing two coordinated boron atoms rather than the single coordinated atom usually occurring in these ligands, and the proximity of two boron atoms at close quarters in the ligand cavities gives rise to some unusual reaction and redox chemistry. The survey is organized by the number of pyrrole moieties occurring in the ligand and focuses on new and unique chemistry observed for the complexes.  相似文献   

3.
W Cao  H Wang  X Wang  HK Lee  DK Ng  J Jiang 《Inorganic chemistry》2012,51(17):9265-9272
Reaction of the half-sandwich complexes M(III)(Pc)(acac) (M = La, Eu, Y, Lu; Pc = phthalocyaninate; acac = acetylacetonate) with the metal-free N-confused 5,10,15,20-tetrakis[(4-tert-butyl)phenyl]porphyrin (H(2)NTBPP) or its N2-position methylated analogue H(CH(3))NTBPP in refluxing 1,2,4-trichlorobenzene (TCB) led to the isolation of M(III)(Pc)(HNTBPP) (M = La, Eu, Y, Lu) or Y(III)(Pc)[(CH(3))NTBPP] in 8-15% yield. These represent the first examples of sandwich-type rare earth complexes with N-confused porphyrinato ligands. The complexes were characterized with various spectroscopic methods and elemental analysis. The molecular structures of four of these double-decker complexes were also determined by single-crystal X-ray diffraction analysis. In each of these complexes, the metal center is octa-coordinated by four isoindole nitrogen atoms of the Pc ligand, three pyrrole nitrogen atoms, and the inverted pyrrole carbon atom of the HNTBPP or (CH(3))NTBPP ligand, forming a distorted coordination square antiprism. For Eu(III)(Pc)(HNTBPP), the two macrocyclic rings are further bound to a CH(3)OH molecule through two hydrogen bonds formed between the hydroxyl group of CH(3)OH and an aza nitrogen atom of the Pc ring or the inverted pyrrole nitrogen atom of the HNTBPP ring, respectively. The location of the acidic proton at the inverted pyrrole nitrogen atom (N2) of the protonated double-deckers was revealed by (1)H NMR spectroscopy.  相似文献   

4.
The coordination of boron to a range of polypyrrole-containing ligands is explored in this feature article. The boron dipyrromethenes are well-known as laser dyes and fluorescent labels in biology. Subphthalocyanine and subporphyrin macrocycles containing only three pyrrole rings can exist only when templated by a central boron atom. Boron complexes of expanded porphyrins (six or eight pyrroles) can complex boron in dipyrromethene (but not bipyrrole) sites. The primary focus of the article is on boron porphyrin and corrole complexes, where the tight fit of two boron atoms within the very constrained coordination site gives rise to unexpected chemistry at both boron and the porphyrin ligand. These unusual features are described and reasons for their occurrence postulated.  相似文献   

5.
Toganoh M  Ikeda S  Furuta H 《Inorganic chemistry》2007,46(23):10003-10015
The thermal reactions of N-fused tetraarylporphyrins or N-confused tetraarylporphyrins with Re2(CO)10 gave the rhenium(I) tricarbonyl complexes bearing N-fused porphyrinato ligands (4) in moderate to good yields. The rhenium complexes 4 are characterized by mass, IR, 1H, and 13C NMR spectroscopy, and the structures of tetraphenylporphynato complex 4a and its nitro derivative 15 are determined by X-ray single crystal analysis. The rhenium complexes 4 show excellent stability against heat, light, acids, bases, and oxidants. The aromatic substitution reactions of 4 proceed without a loss of the center metal to give the nitro (15), formyl (16), benzoyl (17), and cyano derivatives (19), regioselectively. In the electrochemical measurements for 4, one reversible oxidation wave and two reversible reduction waves are observed. Their redox potentials imply narrow HOMO-LUMO band gaps of 4 and are consistent with their electronic absorption spectra, in which the absorption edges exceed 1000 nm. Theoretical study reveals that the HOMO and LUMO of the rhenium complexes are exclusively composed of the N-fused porphyrin skeleton. Protonation of 4 takes place at the 21-position regioselectively, reflecting the high coefficient of the C21 atom in the HOMO orbital. The skeletal rearrangement reaction from N-confused porphyrin Re(I) complex (8) to N-fused porphyrin Re(I) complex (4) is suggested from the mechanistic study as well as DFT calculations.  相似文献   

6.
meso-Aryl-substituted pentaphyrins were isolated in the modified Rothemund-Lindsey porphyrin synthesis as a 22-pi-electron N-fused pentaphyrin ([22]NFP5) and a 24-pi-electron N-fused pentaphyrin ([24]NFP5), which were reversibly interconvertible by means of two-electron reduction with NaBH4 or two-electron oxidation with dichlorodicyanobenzoquinone (DDQ). Judging from 1H NMR data, [22]NFP5 is aromatic and possesses a diatropic ring current, while [24]NFP5 exhibits partial anti-aromatic character. Metalation of [22]NFP5 1 with a rhodium(I) salt led to isolation of rhodium complexes 9 and 10, whose structures were unambiguously characterized by X-ray diffraction analyses and were assigned as conjugated 24-pi and 22-pi electronic systems, respectively. In the rhodium(I) metalation of 1, the complex 9 was a major product at 20 degrees C, but the complex 10 became preferential at 55 degrees C. Upon treatment with DDQ, compound 9 was converted to 10 with an unprecedented rearrangement of the rhodium atom.  相似文献   

7.
Insertion of PCl3 or PhBCl2 into 5,10,15,20-tetraaryl-p-benziporphyrin prompted an intramolecular fusion affording anti-aromatic phosphorus(V) and non-aromatic boron(III) complexes of two N-fused dihydro-p-benziporphyrin isomers. These macrocycles are classified as carbatriphyrin due to the common [CNN] coordination. A sequence of direct transformations, triggered by protonation or two-electron redox processes, afforded a set of three mutually convertible N-fused p-benziporphyrinoids, with distinct anti-aromatic, non-aromatic, and aromatic spectroscopic features.  相似文献   

8.
The total electronic energy and nucleus-independent chemical shift (NICS) of 95 isomers of N-confused porphyrin (NCP: normal porphyrin (N(0)CP), singly N-confused porphyrin (N(1)CP), doubly N-confused porphyrin (N(2)CP), triply N-confused porphyrin (N(3)CP), and fully N-confused porphyrin (N(4)CP)) have been calculated by the density functional theory (DFT) method. The stability of NCP decreased by increasing the number of confused pyrrole rings. Namely, the relative energies of the most stable isomers in each confusion level increased in a stepwise manner approximately by +18 kcal/mol: 0 (N(0)CP1), +17.147 (N(1)CP2), +37.461 (N(2)CPb3), +54.031 (N(3)CPd6), and +65.636 kcal/mol (N(4)CPc8). In this order, the mean plane deviation of these isomers increased from 0.000 to 0.123, 0.170, 0.215, and 0.251 A, respectively. The unusual tautomeric forms of pyrrole ring with an sp(3)-carbon were found in the stable forms of N(3)CP and N(4)CP. The NICS values at the mean position of the 24 core atoms were nearly the same for the most aromatic isomers regardless of the confusion level: -15.1280 (N(0)CP1), -13.8493 (N(1)CP2), -13.7267 (N(2)CPd1), -11.7723 (N(3)CPb5), and -13.6224 ppm (N(4)CPa6). The positive correlation between aromaticity and stability was inferred from the plots of NICS and the relative energy of NCP for N(0)CP, N(1)CP, and trans-N(2)CP. On the other hand, the correlation was negative for cis-N(2)CP, N(3)CP, and N(4)CP isomers.  相似文献   

9.
An N-fused porphyrin rhenium complex was synthesized by the thermal reaction of an N-confused porphyrin with Re2(CO)10 and its structure was determined by X-ray crystallographic analysis.  相似文献   

10.
A variety of N-confused tetraphenylporphyrin rhodium complexes were synthesized, and their structures and physical properties were investigated. Depending on the reaction conditions, the rhodium(I), -(III), and -(IV) complexes were produced, which exemplified the versatile coordination mode of N-confused porphyrin ligands.  相似文献   

11.
Internally alkynylated or cyanated N-confused porphyrins have been prepared, and these have been characterized by NMR, UV/Vis/NIR absorption, and X-ray analysis. The desired porphyrins have been synthesized by interconversion between an N-confused porphyrin and an N-fused porphyrin. In the case of terminal alkyne derivatives, intramolecular addition of a pyrrolic NH moiety to the triple bond occurred at ambient temperature to give etheno-bridged N-confused porphyrins. Significant bathochromic shifts in the absorbances of these compounds may be reasonably explained in terms of an increase in their HOMO energy levels due to effective overlap of the porphyrin pi-orbital and the bridged alkene pi-orbital. The corresponding rhodium(I) complexes have also been prepared, and these have been characterized by NMR and X-ray analysis.  相似文献   

12.
A novel, structurally characterized Ni(III) complex of an N-confused porphyrin inner C-oxide has been synthesized from the oxidation of a Ni(II) N-confused porphyrin using OsO4. Crystal data: C53H40N5NiO.CH2Cl2, monoclinic, space group P2/a (No. 13), a=21.229(1) A, b=8.6451(5) A, c=25.762(2) A, beta=93.004(3) degrees, V=4721.6(5) A3, and Z=4.  相似文献   

13.
Beta-unsubstituted meso partially free N-confused porphyrin, N-confused 5,20-diphenylporphyrin (NCDPP, 3), was synthesized in 7% yield by [3 + 1] condensation reaction followed by oxidation. The structures of the free base and its Ag(III) complex were elucidated by the single-crystal X-ray analyses. The Ag(III) complex was more planar than the free base and formed columnar structures stacking to each other with a 3.3 A distance in the crystal. [reaction: see text]  相似文献   

14.
The cis-doubly N-confused porphyrin, H2N2CP, containing two adjacent confused pyrrole rings has been investigated from the point of view of its acid-base and electrochemical behavior in dichloromethane. This novel porphyrin isomer can form two metal-carbon bonds in the central core, stabilizing metal ions in unusually high oxidation states. Furthermore, the two outside N-pyrrole atoms remain available for acid-base and specific solvent interactions. Protonation of the pyrrole N atoms proceeds according to two successive steps, while only a single deprotonation step has been observed in the presence of bases. Similarly, in the case of the silver and copper complexes the protonation and deprotonation of the outer pyrrole rings have been detected, confirming the structure of the metalated species as M(III)-HN2CP. The electrochemical reduction of the metal ions (III/II redox process) and oxidation of the macrocycle ring have been detected respectively at -0.9 and 1.4 V based on spectroelectrochemical measurements in conjunction with the acid/base equilibrium studies. Additional waves observed around -0.5 and 1.3 V have been assigned to redox processes involving water molecules associated with the doubly N-confused porphyrins.  相似文献   

15.
N-fused porphyrin (NFP) is a porphyrin analogue with an 18π tetrapyrrolic macrocycle, in which a unique tripentacyclic ring is embedded. While the optical properties of NFP of absorbing and emitting near-infrared (NIR) light around 1000 nm are promising for its application to NIR technology, its unique structure is also attractive as a platform to construct a novel class of DNA-binding ligands. Herein, we have synthesized a water-soluble derivative of NFP (pPyNFP) possessing four cationic pyridinium substituents and examined its acid/base behaviors and interactions with various forms of DNAs in aqueous solution. pPyNFP interacts with ssDNA and dsDNA electrostatically. pPyNFP also interacts with a G-quadruplex DNA derived from the human telomeric sequence and causes a characteristic spectral change of the G-quadruplex DNA, which suggests that pPyNFP modulates the Na(+)-induced (2 + 2) antiparallel G-quadruplex to the all-parallel structure.  相似文献   

16.
N-fused porphyrin (NFP) is a unique class of photostable near-infrared dyes with an 18π aromatic tetrapyrrole macrocyclic skeleton containing a tri-fused pentacyclic moiety. Here, the synthesis of an iridium complex of N-fused bilatrienone is reported as the degradation product of Ir-cyclooctadiene (cod)-induced oxidative cleavage of NFP under aerobic conditions. Similar to the native bilin chromophores, the ring-opened complex featured a broken π-conjugation circuit and exhibited a broad visible absorption band. In contrast, metalation of NFP using an iridium(I)(cod) complex under an inert atmosphere resulted in the formation of a cod-isomerized (κ13-C8H12)-Ir complex.  相似文献   

17.
Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L1H), 1-acetylferrocenehydrazinecarbothioamide (L2H) and 1-acetylferrocene carbodithioic acid (L3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a=9.9700, b=15.0000 and c=7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.  相似文献   

18.
The coordination chemistry of a Rh(III) porphyrin building block was investigated with a view to the construction of heterometallic arrays of porphyrins. The Rh(III) porphyrin was found to coordinate methanol in the solid state and weakly in CDCl(3) solution. Crystallization afforded five coordinate pi stacked Rh(III) porphyrins. The distribution of products from reaction of Rh(III) porphyrin with DABCO, 4,4'-bipyridine, and 4,4'-bipyrimidine could be displaced toward dimeric species by silica gel column chromatography or recrystallization which served to remove excess ligand. Weak coordination to nitriles was observed, although it was sufficiently strong to organize a dimeric complex of 5,5'-dicyano-2,2'-bipyridine in the solid state. Complexes with 4,4'-bipyrimidine and 5,5'-dicyano-2,2'-bipyridine possess uncoordinated chelating nitrogen atoms. Larger heterometallic porphyrin arrays were assembled using a combination of Sn(IV) and Rh(III) porphyrin coordination chemistry. A Sn(IV) porphyrin acted as a core around which were coordinated two isonicotinate groups, carboxylic acid functionalized porphyrins, or porphyrin trimer dendrons. Rh(III) porphyrins were coordinated to pyridyl groups at the periphery of these entities. In this way an eleven porphyrin array, with four different porphyrin metalation states, was assembled. The diamagnetic nature of both the Rh(III) and Sn(IV) porphyrins, the slow ligand exchange kinetics on the NMR time scale, and tight ligand binding permitted the porphyrin arrays to be analyzed by two-dimensional (1)H NMR techniques.  相似文献   

19.
Seven complexes of manganese(II), copper(II), cadmium, silver(I), samarium(III), and praseodymium( III) with 3-hydroxy-4,6-dinitro-2-ethoxypyridine (HL) were isolated in the crystalline state and studied by IR and UV spectroscopy. The molecular and crystal structures of di(3-hydroxy-4,6-dinitro-2-ethoxypyridinato) diaquacopper(II) [CuL2(H2O)2] were determined. The coordination mode of the organic ligand L? is bidentate chelating through the O(2) oxygen atoms of the hydroxy group and the O(1) atom of the ethoxy group. The coordination polyhedron of the copper atom is a prolate tetragonal bipyramid (4 + 2) with two O(1) atoms in the axial positions (Cu-O(1) 2.413 Å) and two O(2) atoms of the two L?ligands and the O(7) atoms of the water molecules in the equatorial plane (Cu-O(2), 1.912 Å; Cu-O(7), 1.972 Å).  相似文献   

20.
2-(Phenylazo)phenylboranes bearing several substituents were synthesized and substituent effects on their structures and photoisomerization behaviors were investigated to reveal the scope of the photoswitching of the coordination number of the boron by using an azobenzene-based photoresponsive ligand, 2-(phenylazo)phenyl group. 11B NMR, X-ray crystallographic analysis, and UV-vis spectra revealed that electron-donating ability of the substituents at both the boron atom and the azobenzene moiety determined the strength of the interaction between the boron and the nitrogen of the azo group. Photoisomerization behaviors of 2-(phenylazo)phenylboranes are largely affected by the B-N interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号