首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton MR spectroscopy (PMRS) has been found to be useful in differentiating various cystic intracranial lesions. The purpose of the present study was to prospectively evaluate the spectral pattern of various cystic lesions of brain with similar imaging appearances and to determine the accuracy of this technique in the differential diagnosis of these lesions. Fifty-one patients with intracranial cystic lesions (21 abscesses, 20 gliomas, 3 hydatid cysts, 3 arachnoid cysts, 1 case each of glioependymal cyst, xanthogranuloma, infarction and acoustic neuroma) were evaluated with conventional MR imaging and in vivo PMRS. Ex vivo PMRS of the cystic contents aspirated at surgery in 31 cases was also done to confirm the in-vivo results. Preoperative diagnosis of the lesions was based on the results of in vivo PMRS. In vivo PMRS accurately predicted the pathology in 92% of the cases. We conclude that in-vivo PMRS complements imaging in better characterization of cystic intracranial mass lesions.  相似文献   

2.
Reordered snapshot fast low-angle shot images with, and without, diffusion-perfusion gradients were used for the evaluation of contents of cystic ovarian lesions. Sonographically detected 51 cystic ovarian lesions (13 endometrial cysts, 17 ovarian cysts, 7 serous cystadenomas, 6 mucinous cystadenomas, 8 malignant cystic ovarian tumors) were studied. T1- and T2-weighted images, reordered snapshot fast low-angle shot images with and without diffusion-perfusion gradients (b = 106 and 0 s/mm2, respectively) were obtained. Using these images, apparent diffusion coefficients (ADCs) were calculated in the cystic contents of these lesions. Endometrial cysts and malignant cystic ovarian tumors showed lower ADC values than ovarian cysts, serous cystadenomas and mucinous cystadenomas (p < 0.02). There was no distinct ADC difference among ovarian cysts, serous cystadenomas, mucinous cystadenomas (p > 0.2). In conclusion, diffusion-weighted magnetic resonance imaging is possible to be useful to evaluate cystic contents of ovarian lesions.  相似文献   

3.
《Magnetic resonance imaging》1995,13(7):1019-1029
Thirty-four patients showing cystic intracranial mass lesions on MR imaging were evaluated by in vivo proton MR spectroscopy (MRS) with the aim of detecting lesion-specific spectral patterns that may assist imaging in better tissue characterization. In vivo spectroscopy was performed using stimulated echo acquisition mode with echo times 20 m and 270 m in all, and spin echo with echo time 135 m in 11 patients. All primary neoplasms (intra-as well as extra-axial) showed choline (3.22 ppm) resonance along with lipid and/or lactate (1.3 ppm). It was not possible to grade cystic gliomas based on N-acetyl asparate-to-choline ratio. High-grade gliomas (n = 8) showed lipid/lactate and low-grade gliomas (n = 6) showed only lactate. Seven patients with brain abscess showed resonances only from acetate (1.92 ppm), lactate (1.3 ppm) and alanine (1.5 ppm). Two cases of metastatic adenocarcinoma showed only lipid/lactate. In 7 patients with epidermoid cyst, lactate along with an unassigned resonance at 1.8 ppm was observed and could be easily differentiated from arachnoid cyst (n = 2), which showed only minimal lactate. A case of cystic meningioma could be differentiated from cystic schowannoma by the presence of alanine in the former. It is concluded that MR imaging, when combined with in vivo MRS, may help to better characterize intracranial cystic mass lesions.  相似文献   

4.
The apparent diffusion coefficient (ADC) of tissue provides an indication of the size, shape, and orientation of the water spaces in tissue. Thus, pathologic differences between lesions in multiple sclerosis (MS) patients with different clinical courses may be reflected by changes in ADC measurements in lesions and white matter. Twelve healthy subjects and 35 MS patients with a relapsing-remitting (n = 10), benign (n = 8), secondary progressive (n = 8) and primary progressive (n = 9) clinical course were studied. T2-weighted and post-gadolinium T1-weighted images were obtained using a 1.5 T Signa Echospeed magnetic resonance imaging (MRI) system. Diffusion-weighted imaging was implemented using a pulsed gradient spin echo (PGSE) sequence with diffusion gradients applied in turn along three orthogonal directions in order to obtain the average apparent diffusion coefficient (ADCav). Navigator echo correction and cardiac gating were used to reduce motion artifact. ADC maps were derived using a two point calculation based on the Stejskal-Tanner formula. Diffusion anisotropy was estimated using the van Gelderen formula to calculate an anisotropy index. MS lesions had a higher ADC and reduced anisotropy compared with normal appearing white matter. Highest ADC values were found in gadolinium enhancing lesions and non-enhancing hypointense lesions on T1-weighted imaging. MS white matter had a slightly higher ADC and lower anisotropy than white matter of healthy subjects. Lesion and white matter ADC values did not differ between patients with different clinical courses of MS. There was no correlation between lesion ADC and disability. Diffusion-weighted imaging with measurement of ADC using the PGSE method provides quantitative information on acute edematous MS lesions and chronic lesions associated with demyelination and axonal loss but does not distinguish between clinical subtypes of MS.  相似文献   

5.
We have compared and analyzed the value of in vivo proton MR spectroscopy (PMRS) and T1 weighted magnetization transfer (MT) MR imaging in tissue characterization of brain tuberculomas. We studied 33 cases of proven intracranial tuberculomas with in vivo PMRS and T1 weighted MT MR imaging. MT ratios from the rim and core of the tuberculomas were calculated and compared with metabolites seen on PMRS. Final diagnosis of tuberculoma was based on histopathology (n = 26) and/or associated tuberculous meningitis (n = 7) in all the cases. Out of the 33 patients who underwent both PMRS and T1 weighted MT MR imaging, spectroscopy showed only lipids at 0.9 ppm, 1.3 ppm, 2.0 ppm, and 2.80 ppm in 26 cases while lipids at 0.9 ppm, 1.3 ppm, 2.0 ppm and 2.80 ppm along with choline at 3.22 ppm was seen in remaining 7 patients. MT ratios from the core or solid necrosis varied from 21-29% while from the rim or cellular region varied from 16-24%. MT ratios from all the 33 lesions were consistent with tuberculomas while PMRS showed choline along with lipids in 7 predominantly cellular lesions simulating a neoplasm. We conclude that T1 weighted MT MR imaging appears to be more consistent in the tissue characterization of brain tuberculomas.  相似文献   

6.
Fluid-attenuated inversion recovery (FLAIR) technique offers an effective tool to diminish partial-volume averaging effects from cerebrospinal (CSF) signal with in vivo magnetic resonance imaging. CSF-suppressed and unsuppressed direction-dependent diffusion-weighted (DW) images are obtained with a DW spin-echo EPI sequence in a single acquisition scheme. Comparison of unsuppressed and CSF-suppressed apparent diffusion coefficient (ADC) maps yields consistent values for brain tissue in volunteers when no partial-volume effects are expected, but differs considerably at borders of parenchyma to ventricles and sulci. From theory and phantom studies, a corrected anisotropy index is introduced considering differences of statistical fit errors. Anisotropy of white matter is observed in normal brain of volunteers. Anisotropy index maps reveal destruction of fiber tracts in pathologic areas. Results of a preliminary study on 12 patients with intra-axial tumors indicate an improved delineation of tumor boundaries of FLAIR ADC maps against unsuppressed acquisition.  相似文献   

7.
Susac syndrome: serial diffusion-weighted MR imaging   总被引:2,自引:0,他引:2  
Susac syndrome (SS) is a clinical triad of hearing loss, retinal artery occlusion and encephalopathy. The typical MR imaging findings of multiple focal lesions in the corpus callosum and subcortical white matter can be easily misdiagnosed as multiple sclerosis. On diffusion-weighted (DW) MR imaging, new lesions were hyperintense, with reduced apparent diffusion coefficient (ADC). These lesions later became less prominent or hypointense on subsequent DW MR imaging. Serial DW imaging and ADC maps may be useful in differentiating SS from demyelinating diseases.  相似文献   

8.
A phantom with T1 and T2 relaxation times encompassing normal liver and liver lesions was constructed to evaluate fast magnetic resonance pulse sequences using TR from 21-100 milliseconds, TE 12-60 milliseconds and flip angles from 5 degrees-90 degrees. Ten of these fast MR sequences were then selected and compared with conventional spin-echo sequences in normal volunteers (n = 3) and in patients with liver lesions (n = 6). Subjectively, the fast MR sequences eliminated motion artefacts. Objectively, 8 of 10 fast sequences had signal-to-noise ratios comparable to spin-echo imaging whereas only 2 of 10 had contrast-to-noise ratios that were similar to spin-echo imaging. This preliminary study, performed at 1.5 Tesla, does not show any clear-cut advantage of fast imaging over spin-echo imaging in the detection of liver lesions. The use of a liver tissue equivalent phantom provides a rapid, practical approach in evaluation of fast scans.  相似文献   

9.
The purpose of this study was to determine whether proton magnetic resonance spectroscopy (PMRS) and diffusion tensor imaging (DTI) indices, fractional anisotropy (FA) and mean diffusivity (MD) can be used to distinguish brain abscess from cystic brain tumors, which are difficult to distinguish by conventional magnetic resonance imaging (MRI). Fifty-three patients with intracranial cystic mass lesions and 10 normal controls were studied. Conventional MRI, PMRS and DTI of all the patients were performed on a 1.5-T GE scanner. Forty patients were with brain abscess and 13 with cystic tumors. Cytosolic amino acids (AAs) were present in 32 of 40 brain abscess patients. Out of 13 patients with cystic tumors, lactate and choline were seen in 3 and only lactate was present in 10 patients on PMRS. All 40 cases of abscess had high FA, while all 13 cases of tumor cysts had high MD values. We conclude that FA measurements are more sensitive in predicting the abscess, while PMRS and MD are more specific in differentiating abscess from cystic tumors. We suggest that PMRS should be combined with DTI rather than with diffusion-weighted imaging as FA can be used as an additional parameter for separation of abscess from other cystic intracranial mass lesions.  相似文献   

10.
The present study was designed to evaluate tissue contrast characteristics obtained with the spin-lock (SL) technique by comparing the results with those generated with a magnetization transfer(MT)-weighted gradient echo [GRE, echo-time (TE) = 40 ms] sequence. Twenty-eight patients with hepatic hemangiomas (n = 14), or metastatic liver lesions (n = 14) were imaged at 0.1 T by using identical imaging parameters. Gradient echo, single–slice off-resonance MT, and multiple-slice SL sequences were obtained. SL and MT-effects were measured from the focal liver lesions and from normal liver parenchyma. In addition, tissue contrast values for the liver lesions were determined. Statistically significant difference between the SL-effects of the hemangiomas and metastases, and also between the MT-effects of the lesions was observed (p < 0.02). Tissue contrast values for the lesions proved to be quite similar between the SL and MT techniques. Our results indicate that at 0.1 T multiple-slice SL imaging provides MT based tissue contrast characteristics in tissues rich in protein with good imaging efficiency and wide anatomical coverage, and with reduced motion and susceptibility artifacts.  相似文献   

11.
Promising recent investigations have shown that breast malignancies exhibit restricted diffusion on diffusion-weighted imaging (DWI) and may be distinguished from normal tissue and benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. In this study, we assessed the influence of intravoxel fat signal on breast diffusion measures by comparing ADC values obtained using a diffusion-weighted single shot fast spin-echo sequence with and without fat suppression. The influence of breast density on ADC measures was also evaluated. ADC values were calculated for both tumor and normal fibroglandular tissue in a group of 21 women with diagnosed breast cancer. There were systematic underestimations of ADC for both tumor and normal breast tissue due to intravoxel contribution from fat signal on non–fat-suppressed DWI. This ADC underestimation was more pronounced for normal tissue values (mean difference=40%) than for tumors (mean difference=27%, P<.001) and was worse in women with low breast tissue density vs. those with extremely dense breasts (P<.05 for both tumor and normal tissue). Tumor conspicuity measured by contrast-to-noise ratio was significantly higher on ADC maps created with fat suppression and was not significantly associated with breast density. In summary, robust fat suppression is important for accurate breast ADC measures and optimal lesion conspicuity on DWI.  相似文献   

12.

Purpose

To retrospectively identify apparent diffusion coefficient (ADC) values of pediatric abdominal mass lesions, to determine whether measured ADC of the lesions and signal intensity on diffusion-weighted (DW) images allow discrimination between benign and malignant mass lesions.

Materials and Methods

Approval for this retrospective study was obtained from the institutional review board. Children with abdominal mass lesions, who were examined by DW magnetic resonance imaging (MRI) were included in this study. DW MR images were obtained in the axial plane by using a non breath-hold single-shot spin-echo sequence on a 1.5-T MR scanner. ADCs were calculated for each lesion. ADC values were compared with Mann–Whitney U test. Receiver operating characteristic curve analysis was performed to determine cut-off values for ADC. The results of visual assessment on b800 images and ADC map images were compared with chi-square test.

Results

Thirty-one abdominal mass lesions (16 benign, 15 malignant) in 26 patients (15 girls, 11 boys, ranging from 2 days to 17 years with 6.9 years mean) underwent MRI. Benign lesions had significantly higher ADC values than malignant ones (P<.001). The mean ADCs of malignant lesions were 0.84±1.7×10−3 mm2/s, while the mean ADCs of the benign ones were 2.28±1.00×10−3 mm2/s. With respect to cutoff values of ADC: 1.11×10−3 mm2/s, sensitivity and negative predictive values were 100%, specificity was 78.6% and positive predictive value was 83.3%. For b800 and ADC map images, there were statistically significant differences on visual assessment. All malignant lesions had variable degrees of high signal intensity whereas eight of the 16 benign ones had low signal intensities on b800 images (P<.001). On ADC map images, all malignant lesions were hypointense and most of the benign ones (n=11, 68.7%) were hyperintense (P<.001).

Conclusion

DW imaging can be used for reliable discrimination of benign and malignant pediatric abdominal mass lesions based on considerable differences in the ADC values and signal intensity changes.  相似文献   

13.
The effects of varying the inversion or excitation RF pulse flip angles on image contrast and imaging time have been investigated in IR imaging theoretically, with phantoms and with normal volunteers. Signal intensity in an IR pulse sequence as a function of excitation, inversion and refocusing pulse flip angles was calculated from the solution to the Bloch equations and was utilized to determine the contrast behavior of a lesion/liver model. Theoretical and experimental results were consistent with each other. With the TI chosen to suppress the fat signal, optimization of the excitation pulse flip angle results in an increase in lesion/liver contrast or allows reduction in imaging time which, in turn, can be traded for an increased number of averages. This, in normal volunteers, improved spleen/liver contrast-to-noise ratio (9.0 vs. 5.7, n = 8, p less than 0.01) and suppressed respiratory ghosts by 33% (p less than 0.01). Reducing or increasing the inversion pulse from 180 degrees results in shorter TI needed to null the signal from the tissue of interest. Although this decreases the contrast-to-noise ratio, it can substantially increase the number of sections which can be imaged per given TR in conventional IR imaging or during breathold in the snapshot IR (turboFLASH) technique. Thus, the optimization of RF pulses is useful in obtaining faster IR images, increasing the contrast and/or increasing the number of imaging planes.  相似文献   

14.
The choice of appropriate MR pulse sequences to highlight a particular pathology to best advantage is not always straightforward. In this study of intracranial haemorrhage, tissue relaxation times measured in vitro were entered into a computer program which calculated the signal intensity of each tissue (brain, blood, CSF, and bloody CSF) for all possible echo (TE) and repeat (TR) times. Analysis of graph plots of the results enabled the selection of pulse sequences which gave optimal separation of the signal intensities of intracranial haemorrhage from those of normal intracranial contents. The sequences thus chosen were used successfully in the imaging of patients with intracranial haemorrhage.  相似文献   

15.

Introduction

To clarify the mechanism underlying apparent diffusion coefficient (ADC) changes in regional intracranial tissue during the cardiac cycle, we investigated relationships among ADC changes, volume loading, and intracranial pressure using a hemodialyzer phantom in magnetic resonance imaging (MRI).

Materials and Methods

The hemodialyzer phantom consisted of hollow fibers (HF), the external space of HFs (ES), and a gateway of dialysis solution, filled with syrup solution and air. The high-volume and low-volume loadings were periodically applied to HFs by a to-and-fro flow pump, and syrup solution was permitted to enter or leave HFs during the volume loading cycles. ADC maps at each volume loading phase were obtained using ECG-triggered single-shot diffusion echo-planar imaging. Dynamic phase contrast MRI was also used to measure volume loading to the phantom. We compared the ADC changes, volume loading, and intracranial pressure in the phantom during the cardiac cycle.

Results

ADC changes synchronized significantly with absolute volumetric flow rate change. The maximum ADC change was higher in high-volume loading cycles than in low-volume loading cycles. Results showed that the water molecules in ES fluctuated according to the force transferred from HF to ES. ADC changes were dependent upon the volumetric flow rate during the cardiac cycle.

Conclusions

Our original phantom allowed us to clarify the mechanism underlying water fluctuations in intracranial tissues. Measurement of maximum changes in ADC is an effective method to define the transfer characteristics of the arterial pulsatile force in regional intracranial tissue.  相似文献   

16.
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter for the normal function of mammal and human brain. It is difficult to detect GABA signal with the conventional single quantum technique due to its relatively low concentration and overlapping with other signals from creatine (Cr), glutathione (GSH), as well as macromolecules. Using a high-selective read pulse, DANTE, and at the facility of increased sensitivity and chemical shift resolution at high-field 4.1T, GABA editing by double quantum filter (DQF) with robust suppression of Cr and GSH was achieved. Our editing efficiency of 40-50% was achievable on a GABA phantom (50 mM GABA and 61 mM choline). Furthermore, GABA editing spectra were acquired with echo time TE = 77 ms, and any possible macromolecular contamination to GABA editing spectra was found to be negligible. This high-field DQF setup was applied to 11 healthy volunteers, and the mean GABA level was measured to be 1.12 +/- 0.15 mM in the occipital lobe in reference to 7.1 mM Cr concentration.  相似文献   

17.
18.
We evaluated whether apparent diffusion coefficient (ADC) value is more useful than signal intensity for differentiating endometrial cysts from other pelvic cysts. In an in vitro study, signal intensity and diffusion coefficients were measured in whole blood phantoms in which blood oxidation was gradually increased and concentration subsequently diluted. Although both signal intensity and diffusion value were largely affected by blood concentration, diffusion value was almost independent of blood oxidation and red blood cell lysis-related diminution of magnetic nonhomogeneity, both factors greatly affecting signal intensity on T1- and T2-weighted images. In an in vivo study, differentiation between endometrial and other pelvic cysts was attempted by means of ADC values and signal ratios of cysts to muscles on T1- and T2-weighted images (T1- and T2-ratios). Endometrial cysts tended to show lower T2-ratios, higher T1-ratios, and lower ADC values than other pelvic cysts (p < 0.001). However, ADC values were not correlated with T1- and T2-ratios (p < /0.15/). The ability of ADC value to discriminate between these two groups (discriminant rate, 91.4%) was higher than that of T2-ratio (71.4%) or T1-ratio (88.6%). If combined, ADC and T1-ratio (or T2-ratio) showed higher discriminant rate (94.3%) than the combination of T1- and T2 ratios (88.6%). ADC value might be useful for evaluating the blood concentration of a cystic lesion, because diffusion value is more closely related to blood concentration and almost independent of blood oxidation and red blood cell lysis that largely affect signal intensity.  相似文献   

19.
We compared the ability and reproducibility of a fast fluid-attenuated inversion recovery (fast-FLAIR) sequence with and without a magnetization transfer (MT) pulse for detecting and measuring multiple sclerosis (MS)-related abnormalities on magnetic resonance imaging (MRI) scans from 20 patients. The Contrast-to-Noise ratios between lesions and normal-appearing white matter, lesion numbers, lesion volumes and the variability of such measurements were similar for the two sequences. This suggests that the addition of MT to FLAIR sequences as currently implemented on standard MRI scanners does not improve the detection of MS lesions.  相似文献   

20.

Purpose

To prospectively evaluate the feasibility of diffusion-weighted magnetic resonance imaging (DWI) for monitoring early treatment response to chemoradiotherapy (CRT) of nasopharyngeal carcinoma (NPC).

Materials and methods

Thirty-one patients with stage III and IV NPC were enrolled in this study from February 2012 to November 2012.T2-weighted and DWI sequences with diffusion factor of 0 and 800mm²/s were performed using a 3.0 T Philips Achieva TX scanner at baseline and 3 days, 20 days (after the first cycle of chemotherapy), 50 days (6 days after radiotherapy initiation) after neoadjuvant chemotherapy (NAC) initiation. The diameter of each primary lesion and target metastatic lymph node before and after the first cycle of NAC was measured and classified into stable disease (SD), partial response (PR) or completed response (CR) based on RECIST 1.1. The apparent diffusion coefficient (ADC) values and changes compared to baseline at each time point were compared between responders (CR and PR) and non-responders (SD). The rates of residual at the end of CRT were compared between these two groups.

Results

A significant increase in ADC was observed at each stage of therapy (P=.001) in lesions of primary and metastatic. The ADC values (ADC), ADC changes (ΔADC) and percentage ADC changes (Δ%ADC) of day 20 in responders were significantly higher than in non-responders for both primary lesions (p=.005, p=.006, p=.008, respectively) and metastatic lymph nodes (p=.002, p=.002, p=.003). Non-responders showed a higher rate of residual for both primary lesions (p=.008) and metastatic lymph nodes (p=.024) than responders.

Conclusions

DW MR imaging allows for detecting early treatment response of NPC. Patients with high ADC values and large ADC increase early after NAC initiation tended to respond better to CRT. Thus, accessing the curative effect of NAC in advanced NPC provides the opportunity to adjust following CRT regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号