首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘艳  王文亮  王渭娜  罗琼  李前树 《化学学报》2006,17(17):1785-1792
应用量子化学从头算和密度泛函理论(DFT)对CH3S与HCS双自由基单重态反应进行了研究. 在MPW1PW91/ 6-311G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型, 用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证. 在QCISD(t)/6-311++G(d,p)水平上计算各物种的单点能, 并对总能量进行了零点能校正. 研究结果表明, CH3S与HCS反应为多通道反应, 有4条可能的反应通道, 反应物首先通过S…S弱相互作用形成具有竞争反应机理的五元环硫-硫偶合中间体a和链状硫-硫偶合中间体c, 再由此经过氢迁移、离解、异构化等不同机理得到主要产物P1 (2CH2S), 次要产物P2 (CH3SH+CS), P3 (CH4+CS2)和P4 [CH2(SH)CSH]. 根据势能面分析, 所有反应均为放热反应, 生成P1的反应热为-165.55 kJ•mol-1. 通道Ra→TSa/bbP1为标题反应的主通道, 其速控步骤a→TSa/bb在200~2000 K温度区间内的速率常数可以表示为k1CVT/SCT=1.75×1010T0.65exp(-907.6/T) s-1. P3P4的生成需要越过很高的活化能垒, 是动力学禁阻步骤, 但在反应体系中加入合适催化剂, 改变其反应机理, 有可能使生成CH2(SH)CSH, CH4及CS2的反应易于进行.  相似文献   

2.
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560
采用密度泛函方法(MPW1PW91)在6-311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH (R1), 脱H2反应CH3S→HCS+H2 (R2)以及脱H2产物HCS异构化反应HCS→CSH (R3)的微观动力学机理. 在QCISD(t)/6- 311++G(d,p)//MPW1PW91/6-311G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200~2000 K温度区间内的速率常数kTSTkCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 结果表明, 反应 R1, R2 和R3的势垒△E分别为160.69, 266.61和241.63 kJ/mol, R1为反应的主通道. 低温下CH3S比CH2SH稳定, 高温时CH2SH比CH3S更稳定. 另外, 速率常数计算结果显示, 量子力学隧道效应在低温段对速率常数的计算有显著影响, 而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

3.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

4.
尚静  查东  李来才  田安民 《化学学报》2006,64(9):923-929
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

5.
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

6.
赵岷  刘朋军  常鹰飞  孙昊  苏忠民  王荣顺 《化学学报》2005,63(11):1013-1017
在QCISD(T)/6-311+G(d,p)//B3LYP/6-311+G(3df,3pd)水平上, 对CH3O与ClO双自由基反应进行了理论研究. 结果表明, 该反应共有三个反应通道, 产物分别为HOCl+CH2O, CH2O2+HCl和CH3Cl+O2(1Δ). 不论从动力学角度, 还是从热力学角度看, 形成产物HOCl+CH2O的通道均是最有利的, 因此为主要反应通道, 这与实验观察到的结果是一致的.  相似文献   

7.
采用MP2和CIS方法分别优化双核Au(I)磷硫配合物, [Au2(SHCH2SH)2]2+ (1), [Au2(SHCH2SH)(PH2CH2PH2)]2+(2), [Au2(PH2CH2PH2)2]2+ (3), [Au2(SHCH2SH)(SCH2S)] (4), [Au2(PH2CH2PH2)(SCH2S)] (5)和[Au2(SCH2S)2]2- (6), 基态和激发态的结构. 计算结果表明基态时16中存在Au(I)-Au(I)弱吸引作用, 激发态时15的金属间相互作用明显增强而6则减弱, 这与实验研究结果一致. 单激发组态相互作用计算揭示: 磷硫配体的更替使得Au(I)配合物跃迁性质呈现MC→MMLCT→MLCT的规律性变化(MC: 金属中心; MMLCT: 金属金属到配体电荷转移; MLCT: 金属到配体电荷转移).  相似文献   

8.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

9.
以Cu+和Zn+与CS2反应作为第一过渡金属离子与CS2反应的范例体系. 采用密度泛函UB3LYP/6-311+G*方法计算研究了第一过渡金属离子在基态和激发态与CS2反应的反应机理. 全参数优化了反应势能面上各驻点的几何构型, 用频率分析方法和内禀反应坐标(IRC)方法对过渡态进行了验证. 并用UCCSD(T)/6-311G*方法对各驻点作了单点能量校正. 在Cu+与CS2反应中, 计算了单重态初始中间体1IM1到三重态插入型中间体3IM2的反应交叉势能面. 确定了第一过渡金属离子与CS2的反应为插入-消去反应, 找到了基态和激发态金属离子与CS2反应的主要通道.  相似文献   

10.
CH2=CHCl与O(3P)反应的理论研究   总被引:1,自引:0,他引:1  
胡武洪  申伟 《化学学报》2005,63(12):1042-1048
用量子化学密度泛函理论和QCISD (Quadratic configuration interaction calculation)方法, 对O(3P)与CH2CHCl的反应进行了理论研究. 在UB3LYP/6-311++G(d,p), UB3LYP/6-31++G(3df, 3pd)计算水平上, 优化了反应物、产物、中间体和过渡态的几何构型, 并在UQCISD(T)/6-311++G(2df,2pd)水平上计算了单点能量. 为了确证过渡态的真实性, 在UB3LYP/6-311++G(3df,3pd)水平上进行了内禀坐标(IRC)计算和频率分析, 并确定了反应机理. 研究结果表明, 反应主要产物为CH2CHO和Cl.  相似文献   

11.
采用MP2(Full)/6-311G(d,p)和B3LYP/6-311G(d,p)找到了反应Cl+CH2SH→HCl+CH2S的两个可能的反应通道, 得到了各反应通道的反应物、中间体、过渡态和产物的优化构型、谐振频率. 对反应进程中若干关键点进行了电子密度拓扑分析, 讨论了反应进程中键的断裂、生成和化学键的变化规律, 找到了该反应的结构过渡区(结构过渡态)和能量过渡态, 发现了反应热与结构过渡区之间的关系.  相似文献   

12.
采用MP2(Full)/6-311G(d,p)和B3LYP/6-311G(d,p)找到了反应Cl+CH2SH→HCl+CH2S的两个可能的反应通道, 得到了各反应通道的反应物、中间体、过渡态和产物的优化构型、谐振频率. 对反应进程中若干关键点进行了电子密度拓扑分析, 讨论了反应进程中键的断裂、生成和化学键的变化规律, 找到了该反应的结构过渡区(结构过渡态)和能量过渡态, 发现了反应热与结构过渡区之间的关系.  相似文献   

13.
以Cu+和Zn+与CS2反应作为第一过渡金属离子与CS2反应的范例体系. 采用密度泛函UB3LYP/6-311+G*方法计算研究了第一过渡金属离子在基态和激发态与CS2反应的反应机理. 全参数优化了反应势能面上各驻点的几何构型, 用频率分析方法和内禀反应坐标(IRC)方法对过渡态进行了验证. 并用UCCSD(T)/6-311G*方法对各驻点作了单点能量校正. 在Cu+与CS2反应中, 计算了单重态初始中间体1IM1到三重态插入型中间体3IM2的反应交叉势能面. 确定了第一过渡金属离子与CS2的反应为插入-消去反应, 找到了基态和激发态金属离子与CS2反应的主要通道.  相似文献   

14.
用密度泛函理论(DFT)的B3LYP方法,在6-311G、6-311+G(d)、6-311++G(d, p) 基组水平上研究了CH3CF2O2与HO2自由基反应机理. 结果表明, CH3CF2O2与HO2自由基反应存在两条可行的通道. 通道CH3CF2O2+HO2→IM1→TS1→CH3CF2OOH+O2的活化能为77.21 kJ•mol-1,活化能较低,为主要反应通道,其产物是O2和CH3CF2OOH. 这与实验结果是一致的;而通道CH3CF2O2+HO2→IM2→TS2→IM3→TS3→IM4+IM5→IM4+TS4→IM4+OH+O2→TS5+OH+O2→CH3+CF2O+OH+O2→CH3OH+CF2O+O2的控制步骤活化能为93.42 kJ•mol-1,其产物是CH3OH、CF2O和O2. 结果表明这条通道也能发生,这与前人的实验结果一致.  相似文献   

15.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

16.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

17.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

18.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

19.
辛景凡  王文亮  王渭娜  张越  吕剑 《化学学报》2009,67(17):1987-1994
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

20.
气相中Sc+和Ti+与CS2反应的计算研究   总被引:1,自引:1,他引:1  
以Sc+和Ti+与CS2反应作为第一前过渡金属离子与CS2反应的范例体系. 采用密度泛函(UB3LYP/6-311+G*)方法计算研究了Sc+和Ti+在基态和激发态与CS2反应的反应机理. 全参数优化了反应势能面上各驻点的几何构型, 用频率分析方法和内禀反应坐标(IRC)方法对过渡态进行了验证. 计算了不同多重度下的反应交叉势能面. 确定了Sc+和Ti+与CS2的反应为插入-消去反应, 找到了基态和激发态金属离子与CS2反应的主要通道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号