首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
刘洪雨  陈立  刘灵  明莹  刘奎  张俊香  郜江瑞 《物理学报》2013,62(16):164206-164206
利用锁模飞秒脉冲激光二次谐波为抽运源, 同步抽运单共振光学参量振荡器, 抽运光中心波长为425 nm, 重复率为76 MHz, 脉宽180 fs, 光学振荡器下转换晶体采用Ⅰ类共线PPKTP, 实验上实现了压缩度为2.58 dB的正交位相压缩光.考虑到实验系统的效率, 可以推知光学参量振荡器输出的下转换光压缩度为 4.48 dB. 关键词: 同步抽运光学参量振荡器 压缩光 锁模飞秒脉冲  相似文献   

2.
对基于周期极化掺镁铌酸锂晶体的信号光单谐振光学参量振荡器的输出特性进行了实验研究.讨论了光学参量振荡器谐振腔的腔长、周期极化铌酸锂晶体的通光长度、输出镜的透过率以及抽运光的脉冲宽度对光学参量振荡器谐振阈值的影响.光学参量振荡器的抽运源采用输出波长为1 064 nm的声光调Q Nd∶YVO4激光器,在重复频率为2 kHz、周期极化掺镁铌酸锂晶体的温度为30 ℃的条件下,光学参量振荡器的振荡阈值仅为48 mW.当抽运功率为94 mW时获得了25 mW的信号光输出,其光-光转换效率为26.6%.  相似文献   

3.
对基于周期极化掺镬铌酸锂晶体的信号光单谐振光学参量振荡器的输出特性进行了实验研究.讨论了光学参量振荡器谐振腔的腔长、周期极化铌酸锂晶体的通光长度、输出镜的透过率以及抽运光的脉冲宽度对光学参量振荡器谐振阈值的影响.光学参量振荡器的抽运源采用输出波长为1 064 nm的声光调Q Nd:YVO_4激光器,在重复频率为2 kHz、周期极化掺镁铌酸锂晶体的温度为30℃的条件下,光学参量振荡器的振荡阈值仅为48 mW.当抽运功率为94 mW时获得了25 mW的信号光输出,其光-光转换效率为26.6%.  相似文献   

4.
本文利用周期极化磷酸氧钛钾晶体构成的半整块结构简并光学参量振荡器实验制备了连续变量光通信波段低频压缩态光场。光学参量振荡器的阈值功率为210 mW。当775nm抽运光场功率为130 mW时,在分析频段50kHz~900kHz范围内获得真空压缩态光场。在200kHz分析频率处,压缩态光场的最大压缩度达5.0dB;在最低分析频率50kHz处,压缩态光场的压缩度为2.0dB。该低频压缩态光场可为基于光纤的量子精密测量提供量子光源。  相似文献   

5.
冯晋霞  杜京师  靳晓丽  李渊骥  张宽收 《物理学报》2018,67(17):174203-174203
音频段压缩态光场是进行连续变量量子精密测量重要的量子资源.本文利用自制的低噪声连续单频671 nm/1.34μm双波长激光器作为抽运源,抽运基于周期极化磷酸氧钛钾晶体的简并光学参量振荡器,进行了光通信波段1.34μm连续变量音频段真空压缩态光场的实验制备.当简并光学参量振荡器运转于阈值以下参量反放大状态时,抽运光场功率为95 mW,本地振荡光功率为60μW时,在分析频率8—100 k Hz范围内研制出1.34μm真空压缩态光场.在分析频率36 k Hz处,压缩态光场的最大压缩度达5.0 d B;在音频频率8k Hz处,压缩态光场的压缩度达3.0 d B.音频段1.34μm压缩态光场可用于实现基于光纤的量子精密测量.  相似文献   

6.
利用周期性极化KTiOPO4晶体构成的连续准相位匹配简并光学参量缩小谐振腔,获得了注入红外的明亮正交振幅压缩光.参量振荡阈值为35 mW.当抽运光功率为20mW时,测得压缩度为2.23dB,特别是当抽运光功率为8mW时,测得压缩度为2.17dB.  相似文献   

7.
马红亮  卫栋  叶晨光  张靖  彭堃墀 《物理学报》2005,54(8):3637-3640
利用周期性极化KTiOPO4晶体构成的连续准相位匹配简并光学参量缩小谐振腔, 获得了注入红外的明亮正交振幅压缩光.参量振荡阈值为35mW.当抽运光功率为20mW时,测得压缩度为223dB,特别是当抽运光功率为8mW时,测得压缩度为217dB. 关键词: 准相位匹配 简并光学参量放大器 明亮振幅压缩光  相似文献   

8.
对应于碱金属原子吸收线的非经典光是量子信息网络中重要光源之一,近年来受到人们的广泛关注。而对应于铯原子D_1线的非经典光场由于其独特的波长在固态量子信息网络中有重要应用前景。采用连续单频钛宝石激光器作为光源,将输出的锁定于铯原子D_1线的894.6nm激光通过外腔倍频产生447.3nm蓝光,再用于抽运由周期极化磷酸氧钛钾(PPKTP)晶体作为非线性介质的连续简并光学参量振荡器,获得铯原子D_1线的单模正交压缩真空光。光学参量振荡器阈值为39mW,在注入抽运光功率为30mW时,利用平衡零拍探测装置测得2.8dB正交压缩度。考虑到探测效率,光学参量振荡器输出光场的实际压缩度为4.4dB。  相似文献   

9.
利用周期极化磷酸氧钛钾(PPKTP)晶体构成的半整块结构简并光学参量放大器获得了连续变量1.5μm光通信波段的明亮正交振幅压缩态光场。光学参量放大器工作于阈值以下反放大状态,阈值功率为220 mW。当780nm抽运光场功率为110 mW,1.5μm注入信号光场功率为115 mW时,下转换光场输出功率为80μW,实测的连续变量1.5μm明亮正交振幅压缩态光场的压缩度达3.0dB。  相似文献   

10.
叶晨光  张靖 《物理学报》2008,57(11):6962-6967
通过光学腔内置周期极化磷酸氧钛晶体的连续光学参量振荡器,以532nm光场为抽运场,产生1064nm的真空压缩态光场,利用平衡零拍探测技术得到3.41dB的实测压缩度,并采用量子层析技术重构出真空压缩态光场在相空间的Wigner准概率分布函数. 关键词: 真空压缩态光场 光学参量振荡器 量子层析 Wigner准概率分布函数  相似文献   

11.
The defect chalcopyrite crystal HgGa2S4 has been employed in a 1064‐nm pumped optical parametric oscillator operating at 100 Hz, to generate ∼5 ns long idler pulses near 4 µm with energies as high as 6.1 mJ and average power of 610 mW. At crystal dimensions comparable to those available for the commercial AgGaS2 crystal, operation of the 1064‐nm pumped HgGa2S4 OPO is characterized by much lower pump threshold and higher conversion efficiency, with the most important consequence that such a device might become practical at pump levels sufficiently lower than the optical damage threshold.  相似文献   

12.
Long-wave infrared (IR) generation based on type-II (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 μm with a single crystal 28 mm in length.  相似文献   

13.
The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB305 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency. The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.  相似文献   

14.
An efficient diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser was employed to generate a high-repetition-rate, high-peak-power eye-safe laser beam with an intracavity optical parametric oscillator (OPO) based on a KTP crystal. The conversion efficiency for the average power is 8.3% from pump diode input to OPO signal output and the slope efficiency is up to 10%. At an incident pump power of 14.5 W, the compact intracavity OPO cavity, operating at 46 kHz, produces average powers at 1571 nm up to 1.2 W with a pulse width as short as 700 ps. PACS 42.60.Gd; 42.65.Yj; 42.55.X  相似文献   

15.
We demonstrate an optical parametric oscillator (OPO) based on GaAs. The OPO utilizes an all-epitaxially-grown orientation-patterned GaAs crystal that is 0.5 mm thick, 5 mm wide, and 11 mm long, with a domain reversal period of 61.2 microm. Tuning either the near-IR pump wavelength between 1.8 and 2 microm or the temperature of the GaAs crystal allows the mid-IR output to be tuned between 2.28 and 9.14 microm, which is limited only by the spectral range of the OPO mirrors. The pump threshold of the singly resonant OPO is 16 microJ for the 6-ns pump pulses, and the photon conversion slope efficiency reaches 54%. We also show experimentally the possibility of pump-polarization-independent frequency conversion in GaAs.  相似文献   

16.
A few‐cycle, broadband, singly‐resonant optical parametric oscillator (OPO) for the mid‐infrared based on MgO‐doped periodically‐poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20‐fs Ti:sapphire laser is reported. By using crystal interaction lengths as short as 250 µm, and careful dispersion management of input pump pulses and the OPO resonator, near‐transform‐limited, few‐cycle idler pulses tunable across the mid‐infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179‐3732 nm (4589‐2680 cm‐1) by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spanning over 422 nm (FWHM) recorded at 3732 nm. The effect of crystal length on spectral bandwidth and pulse duration is investigated at a fixed wavelength, confirming near‐transform‐limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio‐frequency reference, and without active stabilization of the OPO cavity length, an idler power stability better than 1.6% rms over >2.75 hours is obtained when operating at maximum output power, in excellent spatial beam quality with TEM00 mode profile. Photograph shows a multigrating MgO:PPLN crystal used as a nonlinear gain medium in the few‐cycle femtosecond mid‐IR OPO. The visible light is the result of non‐phase‐matched sum‐frequency mixing between the interacting beams.  相似文献   

17.
在半导体泵浦被动调QNd∶GdVO4/Cr4+∶YAG激光腔内,利用KTP晶体实现了高重复频率的内腔OPO的稳定运转。OPO其信号光转换效率为7%,斜效率为10.3%。当泵浦功率7.3W时,可获得平均功率为0.48W,重频15kHz,脉宽6ns,峰值功率达13KW的1570nm激光输出。  相似文献   

18.
We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies. Received: 7 September 2001 / Published online: 7 November 2001  相似文献   

19.
We present a 532 nm-pumped singly-resonant cw optical parametric oscillator based on MgO-doped PPLN with a minimum threshold pump power of 0.3 W. The OPO with a two-mirror standing-wave cavity is optimized by using a tunable diode laser on the path of the resonant signal beam. The maximum output power is 200 mW at an idler wavelength near 1330 nm at a pump power of 2 W. We report the degradation of the output power and beam characteristics at high pump power indicating a strong thermal lensing in the crystal. The continuous tuning range of the OPO is measured to be 800 MHz which is close to 90% of the free spectral range of the OPO cavity.  相似文献   

20.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号