首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is concerned with the application of analytical transmission electron microscopy (TEM) to characterize both chemical composition and bond state of the elements detected in interlayers in C- and SiC-fibre reinforced composites. The chemical bond state of nanometre-sized regions is characterized by means of electron energy loss spectroscopy (EELS), where respective information is gained by analysing energy loss near edge structures (ELNES). In this context results of Si-L23 ELNES investigations are presented concerning the chemical bonding of silicon with carbon, nitrogen and oxygen. The specific bond state of silicon is revealed by recording series of EEL spectra at high energy resolution across the fibre/ matrix interlayers of interest. Moreover, the element distribution is imaged by energy-filtered TEM.Dedicated to Professor Dr. rer.nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

2.
The efficiency of near edge structure investigations in electron energy loss spectroscopy (EELS) is discussed for characterizing the chemical bonding of elements present in the interfacial zone in fibre/matrix composites at nanometre resolution. Two different examples of corresponding analyses are given for a SiC-fibre reinforced borosilicate glass. In particular, the chemical bonding between silicon and carbon or oxygen (e.g. SiC, SiO(2) and SiO(x)C(y)), respectively, is characterized. The results have been attained in a fingerprint manner by comparing the fine structure measured from a material of unknown stoichiometry to that of a standard specimen. In addition, a possibility is demonstrated to image the chemical bonding by energy-filtered microscopy using energy loss near edge structures (ELNES).  相似文献   

3.
Compounds with carbodiimide bonds are of special interest to organic syntheses, materials science and biochemistry. The chemical reactivity of carbodiimides and their utilization ensue from their electronic structure, which can be studied via electron spectroscopic methods. Electron energy loss spectra of dicyclohexylcarbodiimide, polysilyl‐ and polytitanylcarbodiimides have been recorded. The energy loss near edge structures (ELNES) of the C–K, N–K, Si–L2,3 and Ti–L2,3‐ionization edges and their onsets as well as the features of the low‐loss region have been interpreted by ab‐initio quantumchemical calculations using density functional theory (DFT).  相似文献   

4.
The transformation of MoO3 induced by electron beam irradiation was studied by electron energy‐loss spectroscopy (EELS) in combination with electron diffraction and high‐resolution transmission electron microscopy (HRTEM) techniques. The routes of structure transformation were dependent on the applied electron current density. In case of low current density, MoO2 was obtained. In case of high current density, MoO with a rock‐salt structure is suggested to be the final phase. The change in oxidation states of the Mo oxides was deduced from the features in energy‐loss near edge structure (ELNES) of the O K‐edge. Quantitative analysis was successfully employed on Mo M3‐edge and O K‐edge to obtain the O/Mo ratio of the reduced phases. The mechanisms of different structure transformation behaviors were suggested in the frame of radiolysis enhanced diffusion.  相似文献   

5.
The efficiency of near edge structure investigations in electron energy loss spectroscopy (EELS) is discussed for characterizing the chemical bonding of elements present in the interfacial zone in fibre/matrix composites at nanometre resolution. Two different examples of corresponding analyses are given for a SiC-fibre reinforced borosilicate glass. In particular, the chemical bonding between silicon and carbon or oxygen (e.g. SiC, SiO2 and SiOxCy), respectively, is characterized. The results have been attained in a fingerprint manner by comparing the fine structure measured from a material of unknown stoichiometry to that of a standard specimen. In addition, a possibility is demonstrated to image the chemical bonding by energy-filtered microscopy using energy loss near edge structures (ELNES).  相似文献   

6.
The effect of peripheral halogenation is examined based on analytical transmission electron microscopy and thermal analyses of two chemical family structures, specifically the vanadyl-phthalocyanine family (VOPcX: X = H16, F14.5) and the copper-phthalocyanine family (CuPcX: X = H16, F16, Cl16, Cl8Br8), focusing on the process of molecular changes and crystalline disintegrations. To clarify the molecular transformations, electron energy-loss spectroscopy (EELS) is applied to two fluorinated phthalocyanines (VOPcF14.5 and CuPcF16), by monitoring mass changes as well as energy loss near edge structures (ELNES). The elemental mass of both VOPcF14.5 and CuPcF16 remain constant up to 0.5 C x cm(-2), except in the case of mass reduction attributed to oxygen loss occurring in VOPcF14.5. It is expected that the released oxygen will induce higher radiation damage in VOPcF14.5. Although mass variation is not observed in CuPcF16, it is found from ELNES that the pi resonant system of nitrogen is more radiation sensitive than that of carbon. These results imply that the electron sensitivity in VOPcX is triggered by eliminated oxygen or, thus, an induced larger empty space, whereas the sensitivity of CuPcX is dominated only by a large intermolecular empty space resulting in the following bond alterations. It is also found that the decomposition temperature (Td) measured by thermal analyses and the characteristic dose (D1/e) are exponentially correlated to the "effective molecular occupancy" (Oe) evaluated as a volume function of molecules in unit cells. By measuring Td and/or Oe, we discuss the durability of peripheral halogenation with respect to the radiation damage.  相似文献   

7.
Mineralized dental tissues and dental pulp were characterized using advanced analytical transmission electron microscopy (TEM) methods. Quantitative X-ray energy dispersive spectroscopy was employed to determine the Ca/P and Mg/P concentration ratios. Significantly lower Ca/P concentration ratios were measured in peritubular dentine compared to intertubular dentine, which is accompanied by higher and variable Mg/P concentration ratios. There is strong evidence that magnesium is partially substituting calcium in the hydroxyapatite structure. Electron energy-loss near-edge structures (ELNES) of C-K and O-K from enamel and dentine are noticeably different. We observe a strong influence of beam damage on mineralized dental tissues and dental pulp, causing changes of the composition and consequently also differences in the ELNES. In this article, the importance of TEM sample preparation and specimen damage through electron irradiation is demonstrated.  相似文献   

8.
The energy loss near edge structure (ELNES) of the O-K, Ti-L23 and Mn-L23 edges have been recorded in hexagonal Ba3Ti2MnO9 with an energy resolution of 0.10-0.20 eV using a monochromator on a commercial transmission electron microscope (TEM) and compared with a tetragonal BaTiO3 reference sample. The formal valency and symmetry of Mn have been determined using atomic multiplets calculations and its effect on the electronic structure of BaTiO3 has been interpreted through a molecular-orbital model.  相似文献   

9.
The thermal behaviour of [Ba(C2H6O2)4][Sn(C2H4O2)3] used as a BaSnO3 precursor, and its phase evolution during thermal decomposition are described. The initially formed transient barium tin oxycarbonate phase disintegrates into BaCO3 and SnO2, reacting subsequently to BaSnO3. The existence of the intermediate oxycarbonate phase is evidenced by Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD) and electron energy loss spectroscopy (EELS (ELNES)) investigations.  相似文献   

10.
Crystal structures of boron‐rich solids are characterized by boron atom arrangements that are quite diverse: chains, sheets, and a variety of polyhedra like octahedra, pentagonal bipyramids, cuboctahedra, and icosahedra are observed. Probing by electron energy‐loss spectroscopy (EELS), these different structural features are mirrored by a pronounced variation of the energy loss near‐edge fine structure (ELNES) of the BK ionization edges. For identification, characteristics of these fine structures can be used as so‐called “coordination fingerprints”, which is shown for solids like MgB2, TaB2, ZrB2, CaB6, SrB6, BaB6, NaB5C, KB5C, Na3B20, Na2B29, UB12, ZrB12, LaB2C2, CeB2C2, and CaB2C2. In addition, theoretical calculations of ELNES based on the density functional theory (FLAPW method) are presented for an example of boron‐rich solids.  相似文献   

11.
12.
Calcium aluminates, compounds in the CaO-Al2O3 phase system, are used in high-temperature cements and refractory oxides and have wide range of potential technological applications due to their interesting optical, electrical, thermal, and mechanical properties. They are used in both crystalline and glassy form; the glass is an isotropic material while the crystalline materials may be highly anisotropic. This paper will consider two particular crystalline materials, CA2 and CA6, but the results should be applicable to all calcium aluminates. Although CA2 and CA6 crystals contain the same chemical species, Ca, Al, and O, the coordination and local environments of these species are different in the two structures and hence they show very different energy-loss near-edge structures (ELNES) when examined by electron energy-loss spectroscopy (EELS) in the TEM. The data obtained using ELNES can effectively provide a fingerprint for each compound and a map for their electronic structure. Once such fingerprints are obtained, they can be used to identify nano-sized particles/grains or material at interfaces and grain boundaries.In the present study, the local symmetry fingerprints for CA2 and CA6 structures are reported combining experimental spectra with electronic-structure calculations that allow the different features in the spectra to be interpreted. Al-L2,3 and O-K edge core-loss spectra from CA2 and CA6 were measured experimentally using electron energy-loss spectroscopy in a monochromated scanning transmission electron microscope. The near-edge structures were calculated for the different phases using the orthogonalized linear combination of atomic-orbitals method, and took account of core-hole interactions. It is shown that CA2 and CA6 structures exhibit distinctive experimental ELNES fingerprints so that these two phases can be separately identified even when present in small volumes.  相似文献   

13.
Effective energy‐loss functions for Al, Cu, Ag and Au were derived from the reflection electron energy‐loss spectroscopy (REELS) spectra for 1 keV electrons using extended Landau theory. Features of the obtained effective energy‐loss functions are close to those of optical surface energy‐loss functions, revealing the significant contribution of the low energy loss below a few tens of electron‐volts in the REELS spectrum for Cu, Ag and Au. The REELS spectra were reproduced using the newly derived effective energy‐loss functions, leading to the confirmation that this type of database of the effective energy‐loss function is very useful not only for more comprehensive understanding of the measured spectrum of surface electron spectroscopies but also for practical background subtraction in surface electron spectroscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.  相似文献   

15.
Free-electron attachment to thymine and partially deuterated thymine, where D replaces H at all carbon atoms, is studied in the electron energy range from about 0 to 15 eV. The formation of fragment anions that are formed by the loss of one or two H (D) atoms is analyzed as a function of the incident electron energy using a crossed electron/neutral beam apparatus in combination with a quadrupole mass spectrometer. By using partially deuterated thymine and quantum-chemical calculation a bond selectivity for the loss of one and two hydrogen atoms is observed that is determined only by the kinetic energy of the incident electron.  相似文献   

16.
The morphological characterization of polymer blends consisting of polyamide and poly(tetrafluoroethylene) using FT-IR spectroscopy and electron microscopy is described. To enhance the lateral resolution - one of the main limits in infrared spectroscopy - a combination with scanning electron microscopy and analytical electron microscopic methods of a transmission electron microscope was made. The possibilities of electron energy loss spectroscopy and energy filtered transmission electron microscopy (EFTEM) in the area of polymer characterization are outlined.  相似文献   

17.
18.
Effective energy‐loss functions were derived from the reflection electron energy‐loss spectroscopy (REELS) spectra of Ag by an extended Landau approach. The effective energy‐loss functions obtained are close to the surface energy‐loss function in the low‐energy‐loss region, but tend to be closer to the bulk energy‐loss function in the higher energy‐loss region for higher primary energy. The REELS spectra incorporating the effective energy‐loss function are also reproduced in a Monte‐Carlo simulation model and confirm that the simulation reproduces the experimental REELS spectra with considerable success. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The differential spectrum of energy loss events produced in liquid water by electrons has been calculated using a differential cross-section incorporating exchange and binding. The average energy loss in a single event is found to vary from about 28 to about 68 eV for 100 eV for 100 eV to 1 MeV electrons, respectively. All energy loss events above a certain level (set either to 1 or to 5 keV) are assumed to produce branch tracks, which are further degraded using a Monte Carlo technique. The total track averaged energy loss per event for a 1 MeV electron is found to be about 57 eV.  相似文献   

20.
We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号