首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Cu3N films for optical data storage were deposited on Si(100) wafers and 0.6 mm thick polycarbonate DVD base material discs at a temperature of 50 °C by reactive magnetron sputtering. A copper target was sputtered in rf mode in a nitrogen plasma. For basic investigations concerning the composition and structure of Cu3N, Si wafers were used as substrate material. To study the suitability of Cu3N as an optical data storage medium under technical conditions, Cu3N/Al bilayers were deposited on polycarbonate discs. The composition and structure of the films were investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The decomposition of Cu3N into metallic copper and nitrogen was induced and characterized with a dynamic tester consisting of an optical microscope with an integrated high power laser diode. The change in reflectivity induced by the laser pulses was measured by a high sensitivity photo detector. Optimized Cu3N films could be decomposed into metallic copper at pulse lengths of 200 ns. The reflectivity change from 3.2% to 33.2% for completely transformed areas and to 12% for single bits as well as the maximum write data rate of 3.3 Mbit/s demonstrated the suitability of Cu3N for write once optical data storage. Especially the carrier to noise ratio of 41 dB shows an increase of a factor of 3 for this novel material as compared to conventional optical data storage media.  相似文献   

2.
Sol–gel processing of Cu-particle-dispersed (K0.5Na0.5)NbO3 (Cu/KNN) thin films was studied in an attempt to develop a method producing piezoelectric composite films with good mechanical performance. The Cu/KNN films were prepared via crystallization annealing at 650–750 °C for 1 min in air, followed by reduction annealing at 400–500 °C for 1–2 h in a 5% H2 and 95% Ar gas mixture. The resultant composite films consisted of perovskite KNN, metallic Cu, and Cu4O3. This suggests that the decomposition of Cu sources takes two different ways in this study. The Cu/KNN composite films containing Cu4O3 phases were produced by the crystallization annealing at 700 °C for 1 min followed by the reduction annealing at 500 °C for 1 h. Surface morphology observations reveal that these films have dense KNN matrix with a grain size of ~200 nm and uniformly dispersed Cu or Cu4O3 particles with a size of <500 nm.  相似文献   

3.
CuSn thin films were deposited by the radio‐frequency (RF) magnetron co‐sputtering method on Si(100) with Cu and Sn metal targets with various RF powers. The thickness of the films was fixed at 200 ± 10 nm. The synthesized CuSn thin films mainly consisted of Cu20Sn6 and Cu39Sn11 phases, which was revealed by an X‐ray diffraction (XRD) study. The high‐resolution Cu 2p XPS and Cu LMM Auger electron spectra indicate that metallic Cu oxidized to Cu+ and Cu2+ as the RF power on Cu target increased. The atomic ratios of Sn0 and Sn4+ decreased, while that of Sn2+ increased with increasing RF power on the Cu target. The polar surface free energy (SFE) component has a different tendency in comparison with the total SFE and the dispersive SFE component. The dispersive SFE component was the dominating contributing factor to the total SFE compared with the polar SFE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Bismesitoylphosphinic acid, (HO)PO(COMes)2 (BAPO‐OH), is an efficient photoinitiator for free‐radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO‐OH as the ligand. The complex CuII(BAPO‐O)2(H2O)2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from CuII into Cu0 with half an equivalent of BAPO‐OH, which serves as a four‐electron photoreductant.  相似文献   

5.
采用循环伏安法(CV)对离子液体Reline中三元CuCl2+InCl3+SeCl4体系和四元CuCl2+InCl3+GaCl3+SeCl4体系的电化学行为进行了研究。研究表明,In3+并入三元CIS(Cu-In-Se)薄膜体系和Ga3+并入四元CIGS(Cu-In-Ga-Se)薄膜体系均有两种途径:一是发生共沉积,二是直接还原。利用电感耦合等离子体发射光谱(ICP)和扫描电镜(SEM)对沉积电势、镀液温度和主盐浓度对CIGS薄膜组成、镀层表面形貌的影响进行了测试,结果表明通过工艺参数的选择可以控制Ga/(Ga+In)和CIGS薄膜组成并得到化学计量比为Cu1.00In0.78Ga0.27Se2.13的薄膜。  相似文献   

6.
The Cu3Se2 nanofilms were synthesized with underpotential deposition based electrochemical codeposition technique for the first time in the literature. The electrochemical behaviors of copper and selenium were investigated in 0.1 M H2SO4 on Au electrode. The effects of concentration and scan rate on the electrochemical behavior of selenium were studied. The electrochemical behaviors in underpotential deposition and bulk regions of the Cu-Se system were investigated in acidic solution by cyclic voltammetry and electrolysis techniques. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and ultraviolet and visible absorption spectroscopy techniques were used for characterization of synthesized films. According to the X-ray photoelectron spectroscopy spectrum, Cu/Se ratio was determined to be approximately 3/2. Copper selenide nanofilms are two phases and polycrystalline according to X-ray diffraction. The films mainly formed tetragonal Cu3Se2 (umangite mineral structure) structure and the particle size was approximately 45.95 nm. Scanning electron microscopy images showed that Cu3Se2 nanofilms consisted of uniform, nano-sizes and two-dimensional. It was found through AFM that the surface roughness of the film was 6.173 nm, with a mean particle size of around 50 nm. Depending on the deposition time, the band gaps of the Cu3Se2 films were in the range of 2.86–3.20 eV. Three characteristic vibrational modes belonging to Cu3Se2 nanofilms were recorded in the Raman spectrum.  相似文献   

7.
《印度化学会志》2023,100(3):100919
For years, the human race has awaited a more convenient, greener, and largely efficient material for energy conversion and electronic applications. Cu2O thin films produced by spray pyrolysis meet the economic viability and cost requirements, and it is widely assumed that they will lead to the production of functionally viable technologies. The spray pyrolysis method was used to added titanium into copper (I) oxide thin films with a deposition temperature of 200 °C and annealing for 2 h at 200 °C in this study. The Ti-doped Cu2O's optical, surface morphology, and photovoltaic characteristics have all been thoroughly explored. The best characteristics were obtained at 3% Ti doped Cu2O. The near-band emission of Ti-doped Cu2O was moved from 385 nm to 400 nm. The bandgap was reduced from 2.35 to 1.98Ev at 3% Ti doped Cu2O. As a result, Cu2O (Ti)-based solar cells' short circuit current density and open circuit voltage were greatly improved. It has been demonstrated that adding Ti to p-CuO/n-Si solar cells enhances their photovoltaic performance.  相似文献   

8.
Cu-O layers were deposited on Si-<100> wafers at 90°?C by means of reactive magnetron sputtering ion plating (R-MSIP). A Cu-target was sputtered in rf-mode by an oxygen/argon plasma, and the influence of the oxygen partial pressure on composition, structure, texture and morphology of the Cu-O layers was investigated. The analysis with EPMA, XRD, HEED and SEM yielded the following results: with an appropriate setting of the oxygen partial pressure, the oxygen content of the films could be controlled between 0 and 50 at-%. XRD bulk structure analysis shows changes in the crystal structure of the films with increasing oxygen content from the fcc structure of Cu, followed by the sc structure of Cu2O (cuprite), the tetragonal structure of Cu3 2+Cu2 1+O4 (paramelaconite) to the monoclinic structure of CuO (tenorite). As revealed by HEED, the structure of the near-surface region of the latter two is the same as that of the bulk, whereas in the case of the films with fcc bulk structure, due to oxidation by air, the surface has the sc structure of Cu2O, and in the case of the film with the sc structure, a monoclinic surface structure of CuO is observed. SEM analyses detected a disordered columnar growth of all Cu-O films.  相似文献   

9.
Semiconducting copper sulphide (Cu2S) thin films have been deposited on various substrates (SnO2:F/glass, glass) by the simple and economical chemical bath deposition technique. The depositions were carried out during a deposition time of about 32.5 min in the pH range of 9.4 to 11. The synthesized Cu2S thin films were characterized using various techniques without any annealing treatment. X-ray diffraction study shows that Cu2S films exhibit the best crystallinity for pH = 10.2. For this pH value, Auger electron spectroscopy investigations show that Cu2S thin films grown on an SnO2/glass substrate exhibit stochiometric composition with [Cu]/[S] concentrations ratio equal to 2.02. Using the Kelvin method, the work function difference (ФmaterialФprobe) for the Cu2S films deposited on SnO2/glass substrates at the optimum pH value was found to be equal to 145 meV. Hall measurements confirm the p-type electrical conductivity of the obtained films. The electrical resistivity was of the order of 3.85 × 10−4 Ω-cm. The transmission and reflection coefficients vary in the range of [35–60] % and [5–15] % respectively, in the visible range, and the band gap energy is about 2.37 eV.  相似文献   

10.
Reducibility of Cu supported on Al2O3, zeolite Y and silicoaluminophosphate SAPO-5 has been investigated in dependence on the Cu content using a method combining conventional temperature programmed reduction (TPR) by hydrogen with reoxidation in N2O followed by a second the so-called surface-TPR (s-TPR). The method enables discrimination and a quantitative estimation of the Cu oxidation states +2, +1 and 0. The quantitative results show that the initial oxidation state of Cu after calcination in air at 400 °C, independent on the nature of the support, is predominantly +2. Cu2+ supported on Al2O3 is quantitatively reduced by hydrogen to metallic Cu0. Comparing the TPR of the samples calcined in air and that of samples additionally pre-treated in argon reveals that in zeolite Y and SAPO-5 Cu2+ cations are stabilized as weakly and strongly forms. In both systems, strongly stabilized Cu2+ ions are not auto-reduced by pre-treatment in argon at 650 °C, but are reduced in hydrogen to form Cu+. The weakly stabilized Cu2+ ions, in contrast, may be auto-reduced by pre-treatment in argon at 650 °C forming Cu+ but are reduced in hydrogen to metallic Cu0.  相似文献   

11.
《Solid State Sciences》2012,14(10):1543-1549
Indium oxide (In2O3) thin films were prepared using thermal oxidation of metallic films. Indium metallic thin films were deposited onto glass substrates, by vacuum thermal evaporation. Optical and electronic transport properties of thermally oxidized In2O3 films were investigated and these properties were correlated with their preparation conditions, more exactly with oxidation temperatures (Tox = 623 K, 673 K and 700 K, respectively). Structural analysis, investigated by X-ray diffraction and electron diffraction, reveals that the obtained films possess a polycrystalline structure. The temperature dependence of electrical conductivity was studied using surface-type cells with Ag electrodes. The electronic transport mechanism, in respective films, is discussed in terms of crystallite boundary trapping, proposed by Seto. Some characteristic parameters such as energy barrier, impurity concentration, distribution of interface states, were determined. Transmission and reflection spectra were recorded and by using the values of these coefficients, some optical parameters were calculated (absorption coefficient, optical band gap, refractive index).  相似文献   

12.
Thin films of indium oxide were prepared by thermal reactive evaporation of a mixture of indium oxide and metallic indium. This work is an experimental study of the modifications induced by an annealing treatment, on the structural, electrical and optical properties of indium oxide (In2O3). The results show important changes of different parameters determined after annealing. The films obtained after annealing at 350 °C for 3 hours under oxygen atmosphere have a good cristallinity. These films showed a transmittance of more than 80% in the visible region and a conductivity >103 (Ω.cm)−1.  相似文献   

13.
 The surface and in-depth compositions of sputter-deposited Cu0.57Ni0.42Mn0.01 thin films were studied by Auger electron depth profiling after thermal treatment. The samples were thermally cycled to maximum temperatures of 300 °C to 550 °C in air, argon and forming gas (N2, 5 vol. % H2). Linear least-squares fit to standard spectra and factor analysis were applied to separate the overlapping Auger transitions of Cu and Ni. Under bombardment by 4 keV argon ions, CuNi(Mn) layers display bombardment-induced surface enrichment of Ni in the same extent as binary CuNi alloys. At sufficiently high oxygen partial pressures, a duplex oxide layer is formed and a thick surface copper oxide overgrows the initial nickel oxide. In reducing atmosphere selective oxidation of manganese takes place. A capping NiCr layer prevents CuNi(Mn) from being oxidized, but the film configuration is degraded with increasing annealing temperature due to formation of a surface chromium oxide and diffusion of Ni from the CuNi(Mn) layer into the NiCr/CuNi(Mn) interface.  相似文献   

14.
15.
Effects of several electron acceptors (Fe3+, Cu2+, Cr(VI), and H2O2) on phenol degradation in anodic contact glow discharge electrolysis have been investigated. Results show that the electron acceptors have positive effects on phenol removal, with the sequence of Fe3+?>?Cr(VI)?>?H2O2?>?Cu2+. Under conditions of voltage 500?V and current 100?mA, 100?mg/L phenol can be removed with 10?min of discharge treatment in the presence of 1.0?mmol/L Fe3+, while without any additive only 35?% of phenol is removed in 30?min. The mechanism of the degradation enhancement was discussed based on the reactions taking place in the presence of the different additives.  相似文献   

16.
《印度化学会志》2023,100(2):100914
The copper-cobalt oxide (Cu2CoO3) was successfully elaborated on indium tin oxide (ITO) substrate using the co-electrodeposition method in citric acid (C6H8O7) solution at a temperature of 70 °C. The co-electrodeposition process of Cu2CoO3 thin films was realized by the electrochemical technique: cycle voltammetry. In this work, the effect of the cycle number on the cyclic voltammetry (CV), structural, and morphological of the Cu2CoO3 thin films were discussed. The (CV) showed that the current density of the co-electrodeposition of Cu2CoO3 decreases with the number of cycles. The X-ray diffraction (XRD) analysis revealed that the co-electrodeposition copper-cobalt oxide (Cu2CoO3) nanocrystallites with orthorhombic crystal structures. The analysis of the morphological surface by scanning electron microscopy (SEM) of copper-cobalt oxide indicated the formation of two types of crystals of different shapes: pyramidal and spherical corresponding to CoO2 and Cu2O respectively.  相似文献   

17.
Herein we describe an alternative strategy to achieve the preparation of nanoscale Cu3N. Copper(II) oxide/hydroxide nanopowder precursors were successfully fabricated by solution methods. Ammonolysis of the oxidic precursors can be achieved essentially pseudomorphically to produce either unsupported or supported nanoparticles of the nitride. Hence, Cu3N particles with diverse morphologies were synthesized from oxygen-containing precursors in two-step processes combining solvothermal and solid−gas ammonolysis stages. The single-phase hydroxochloride precursor, Cu2(OH)3Cl was prepared by solution-state synthesis from CuCl2·2H2O and urea, crystallising with the atacamite structure. Alternative precursors, CuO and Cu(OH)2, were obtained after subsequent treatment of Cu2(OH)3Cl with NaOH solution. Cu3N, in the form of micro- and nanorods, was the sole product formed from ammonolysis using either CuO or Cu(OH)2. Conversely, the ammonolysis of dicopper trihydroxide chloride resulted in two-phase mixtures of Cu3N and the monoamine, Cu(NH3)Cl under similar experimental conditions. Importantly, this pathway is applicable to afford composite materials by incorporating substrates or matrices that are resistant to ammoniation at relatively low temperatures (ca. 300 °C). We present preliminary evidence that Cu3N/SiO2 nanocomposites (up to ca. 5 wt.% Cu3N supported on SiO2) could be prepared from CuCl2·2H2O and urea starting materials following similar reaction steps. Evidence suggests that in this case Cu3N nanoparticles are confined within the porous SiO2 matrix.  相似文献   

18.
本论文采用阳极氧化法在金属钛基底上制备高度有序的TiO2纳米管阵列薄膜,然后采用脉冲电流法在TiO2纳米管阵列上沉积Cu2O,从而制备出Cu2O-TiO2纳米管阵列异质结复合薄膜。借助X射线衍射仪(XRD),场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)等表征手段,详细探讨了Cu2O沉积过程中电解液的不同扰动方式(静止、磁力搅拌和超声搅拌)对复合薄膜物相和形貌的影响。实验结果表明电解液的扰动方式会影响Cu2O沉积过程中的离子扩散和微区化学环境,从而影响Cu2O的形貌。通过漫反射紫外-可见吸收光谱(UV-Vis)和光电流性能测试可知所制备的负载Cu2O型TiO2纳米管阵列薄膜具有显著的可见光响应效应。  相似文献   

19.
采用循环伏安法(CV)对离子液体Reline中三元CuCl2+InCl3+SeCl4体系和四元CuCl2+InCl3+GaCl3+SeCl4体系的电化学行为进行了研究。研究表明,In3+并入三元CIS(Cu-In-Se)薄膜体系和Ga3+并入四元CIGS(Cu-In-Ga-Se)薄膜体系均有两种途径:一是发生共沉积,二是直接还原。利用电感耦合等离子体发射光谱(ICP)和扫描电镜(SEM)对沉积电势、镀液温度和主盐浓度对CIGS薄膜组成、镀层表面形貌的影响进行了测试,结果表明通过工艺参数的选择可以控制Ga/(Ga+In)和CIGS薄膜组成并得到化学计量比为Cu1.00In0.78Ga0.27Se2.13的薄膜。  相似文献   

20.
The influence of low energy ion bombardment on TiNx film growth and film properties was investigated. The discharge was characterized using Langmuir probe technique as well as energy resolved mass spectrometry with a plasma monitor (Hiden HAL 301 S/EQP). The deposited films were investigated by means of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Increasing the N2 gas flow as well as increasing the negative substrate voltage at constant gas flow effect an increase of the N/Ti ratio in the films determined by XPS. The influence of the energy flux to the surface due to ion bombardment was mainly recognized in the substructure of the films. In addition, pure Ti films were modified by nitrogen ion bombardment after deposition using an ion gun. An increase of the N/Ti ratio was observed with increasing ion energy. Finally saturation is reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号