首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method of chromatography is proposed, utilizing a thermo-responsive polymer carrying an amino acid ester residue for the stationary phase of high-performance liquid chromatography (HPLC). We have been investigating the new concept of chromatography, a temperature-responsive chromatography, using temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm)-modified surface for HPLC with a constant aqueous media as the mobile phase. In this study, we designed and synthesized thermo-responsive poly(acryloyl-L-proline methyl ester) and its copolymer with N-isopropylacrylamide (NIPAAm). Homopolymers of acryloyl-L-proline methyl ester and copolymer were prepared by the reaction of radical telomerization. These polymers underwent a reversible phase transition from water-soluble forms into aggregates by changing the temperature, similar to PNIPAAm. The surface properties and functions of stationary phases modified with poly(acryloyl-L-proline methyl ester) were controlled by the external temperature. In the chromatographic system, we separated steroids and amino acids with a variety of hydrophobicities using a sole aqueous mobile phase. In contrast to a PNIPAAm-modified surface, a poly(acryloyl-L-proline methyl ester)-modified surface showed a greater affinity for hydrophobic amino acids.  相似文献   

2.
A poly(N-isopropylacrylamide) (PNIPAAm)-like biodegradable thermosensitive polydepsipeptide, poly[Glc-Asn(N-isopropyl)], was synthesized by introducing an isopropyl amide group into poly[Glc-Asn]. Poly[Glc-Asn(N-isopropyl)] was degraded in vitro by cleavage of the ester bonds in the main chain in water at room temperature. The non-toxic nature of the polymer and its degradation products, coupled with a cloud point at 29 degrees C in water, make this polymer attractive for biomedical implant applications.  相似文献   

3.
A facile route to well-defined "smart" polymer-protein conjugates with tunable bioactivity is reported. Protein modification with a reversible addition-fragmentation chain transfer (RAFT) agent and subsequent room temperature polymerization in aqueous media led to conjugates of poly(N-isopropylacrylamide) and a model protein. Representing the first example of polymer-protein conjugation with RAFT agent immobilization via the "R-group" approach, high molecular weight and reductively stable conjugates were accessible without extensive purification or adverse effects on the protein structure. An increase in molecular weight with conversion was observed for the chains grafted from the protein surface, confirming the controlled nature of the polymerization. The responsive behavior of the immobilized polymer facilitated conjugate isolation and also allowed environmental modulation of bioactivity.  相似文献   

4.
为了研究不同疏水化修饰的聚N 异丙基丙烯酰胺(PNIPAM)高分子的水溶液性质,合成了一系列N 异丙基丙烯酰胺(NIPAM)和长链丙烯酸酯及丙烯酸胆固醇酯的共聚物.利用表面张力法证实了该类共聚物在室温下都具有良好的表面活性,在水溶液中能够形成胶束.利用荧光探针法,研究了共聚物的低温临界溶液温度(LowerCriticalSolutionTemperature,LCST),发现,随着丙烯酸酯碳链及其配比(摩尔投料比)的变化,共聚物的LCST变化不明显,但它们都比均聚的PNIPAM要低;利用荧光偏振法研究了共聚物在水溶液中的微粘度,发现其微粘度不随共聚物中丙烯酸酯链长和配比的变化而变化,说明了该类共聚物在室温下能够形成相类同的胶束内核.  相似文献   

5.
温敏两亲性接枝物PAM-g-PNIPAm的合成及表征   总被引:1,自引:0,他引:1  
以巯基乙胺为分子量调节剂,以丙烯酰氯作为链端转化剂合成了不同分子量的端丙烯酰胺基聚(N-异丙基丙烯酰胺)(PNIPAm)大分子单体;与丙烯酰胺共聚合,合成了以PNIPAm为侧链的接枝聚丙烯酰胺.用FTIR和1HNMR方法表征了接枝聚合物与大分子单体的组成.该接枝聚合物在水溶液中具有热缔合特性及明显的温敏增稠性,水溶液的粘度在32~50℃之间随温度增加而增加.  相似文献   

6.
利用四甲基胍促进二羧酸与二溴代化合物的高效酯化聚合反应,设计、合成了一种新型手风琴式折叠链结构的聚酯脲.具有特殊结构的单体分别是4,4′-二羧基二苯基脲和3,5-二(溴代烷氧基)-苯甲酸酯,因此得到的聚酯脲具有类似接枝共聚物的结构.通过核磁氢谱(~1H-NMR)和傅里叶红外光谱(FTIR)对聚酯脲的结构及分子量进行了表征,结果显示,得到了分子量接近2×10~4的聚酯脲.通过核磁跟踪研究聚合反应动力学,结果表明,聚合反应速度与二溴单体的烷基链长度有关,二溴单体的烷基链较长时,聚合速率较慢.热重分析(TGA)结果显示,这种聚酯脲具有良好的热稳定性;由示差扫描量热(DSC)测试结果获知聚酯脲的熔融温度为57°C,表明它具有结晶性.脲基之间的氢键作用和苯环产生的π-π相互作用驱动这种聚酯脲在溶液中进行自组装.通过透射电子显微镜(TEM)研究聚酯脲的自组装行为,结果表明,该聚酯脲在氯仿和甲醇的混合有机溶剂中,静置4 h后,组装成片层结构;继续静置到3天后,形成了稳定的囊泡结构的聚集体,囊泡壁厚度约7 nm,接近折叠链宽度的预测值;小角X射线(XRD)测试结果表明聚酯脲是有序结构,进一步证实了合成的聚酯脲具有折叠链构象.  相似文献   

7.
Summary: The effect of a polyanion introduced as a lipid conjugate (poly(acrylic acid)- dimyristoyl-sn-glycero-3-phosphoethanolamine, PAA-DMPE) on the structure of a self-assembled, biomembrane mimetic has been evaluated using synchrotron small-angle X-ray scattering (SAXS). At high grafting density (8–11 mol.%), the PAA chains were found to produce significant changes in structure in response to changes in pH and electrolyte composition. At low pH and in the absence of salt (NaCl), the neutral PAA chains adopt a coil conformational state that leads to the formation of a swollen lamellar structure. Upon the addition of salt at low to intermediate pH values, two lamellar phases, a collapsed and an expanded structure, coexist. Finally, when the polymer is fully ionized (at high pH), the extended conformation of the polymer generates a cubic phase. The results of this study contribute to an understanding of how polyelectrolytes may ultimately be harnessed for the preparation of self-assembling materials responsive to external stimuli.  相似文献   

8.
The effects of SDS on the structural changes of the thermally induced polymeric micelles from a graft copolymer comprising poly(acrylic acid) (PAAc) as the backbone and poly(N-isopropylacrylamide) (PNIPAAm) and monomethoxy poly(ethylene glycol) (mPEG) as the grafts in aqueous solution are studied. At low temperature, SDS micelles form via the hydrophobic association of SDS molecules with the PNIPAAm grafts at a critical aggregation concentration of SDS (cac(SDS)) much lower than its critical micelle concentration. Consequently, the critical aggregation temperature of the graft copolymer is elevated. The corresponding structure of the thermally induced polymeric micelles is characterized by an abrupt reduction in the particle size and an increased tendency toward formation of the monocore structure with a more compact and hydrophobic PNIPAAm microdomain being developed. On the other hand, upon the polymeric micelle formation at high temperature, the copolymer-bound SDS micelle structure is disrupted and the dissociated SDS molecules migrate to the core-shell interface with their alkyl chains residing in the liquidlike region of the hydrophobic PNIPAAm microdomain. The correlation between the polymeric particles and copolymer-bound micelles is further substantiated by showing the change of the colloidal particle size in response to changes in cac(SDS) via adjusting the pH of the aqueous copolymer/SDS solutions.  相似文献   

9.
Using poly (N-isopropylacrylamide) co-oligomer with N, N-dimethylacrylamide (DMAAm) (IDc) we prepared polymer-protein conjugates of bovine serum albumin (IDc-BSA). The conjugate underwent reversible hydration-dehydration changes in response to temperature changes and revealed phase separation at body temperature. Mice were immunized by the intravenous, intramuscular or intradermal routes with the IDc-BSA. The intravenous route of single immunization without adjuvants evoked increased primary and secondary specific immune responses to IDc-BSA, whereas the intramuscular and intradermal did not elicit higher antibody production. The intradermal administration of BSA and IDc-BSA together with IFA both gave rise to high immunological activity. It is suggested that the Hydrophobic chain aggregation site of the IDc-BSA conjugate at body temperature would increase the adsorptive capacity of BSA on the immunocompetent cells. The efficiency of such “forced” interactions of conjugate aggregates (high epitope density) are high enough for the immune response.  相似文献   

10.
The thermosensitive block copolymer poly(2-cinnamoylethyl methacrylate)-block-poly(N-isopropylacrylamide) (PCEMA-b-PNIPAAm) can form crew-cut aggregates with multiple morphologies under various micellization conditions. Spherical, rod-like, vesicular, lamellar aggregates, and large compound micelles were obtained from the block copolymers. The effects of different conditions, such as the copolymer composition, the nature of the common solvent, the initial copolymer concentrations, and the water content on the morphologies of the aggregates were studied in detail. The thermosensitive property of the aggregates was investigated through measuring the change of the dimension of the aggregates with changing the external temperature.  相似文献   

11.
12.
含环糊精的温度敏感性聚合物的合成及自组装   总被引:1,自引:1,他引:0  
合成了侧基含环糊精的聚异丙基丙烯酰胺(PnipamCD), 该聚合物在水溶液中具有较高的最低临界溶解温度(LCST). 快速升温到溶液的LCST以上可形成球形胶束, 慢速升温到LCST以上可形成空心囊泡. 在PNIPAM的选择性溶剂中, PnipamCD形成棒状组装体.  相似文献   

13.
The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 °C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 ? following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L(2) phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L(α)) at room temperature and up to ~ 40 °C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q(II)(D)) and gyroid (Q(II)(G)) bicontinuous cubic phases in addition to an L(α) phase.  相似文献   

14.
Low polydispersity poly(N-isopropylacrylamide) with a biotin end-group was obtained in one step from a biotinylated initiator for atom transfer radical polymerization and interacted with streptavidin to generate the thermosensitive polymer-protein conjugate.  相似文献   

15.
The thermosensitive [60]fullerene end-capped poly(N-isopropylacrylamide) was successfully synthesized by the reaction of C(60) with dithiobenzoate-terminated poly(N-isopropylacrylamide), which was prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization in the presence of azobisisobutyronitrile (AIBN). Its structure was determined by FTIR, UV/Vis, and carbon and proton NMR spectroscopy as well as by size exclusion chromatography (SEC). The novel fullerenated polymer retained the thermosensitivity of poly(N-isopropylacrylamide). Moreover, it is soluble in water and most of the common organic solvents. Interestingly, it was able to form nanoparticle clusters in methanol and exhibited significant radical scavenging ability in cell viability and metabolic activity tests with fibroblasts and NOR-3 radicals.  相似文献   

16.
Functional polymers that respond to small changes in environmental stimuli with large changes in their structure and properties are often called "intelligent" polymers. We have modified material surfaces with such polymers and used them in separation systems. Silica beads were modified with the temperature-responsive polymer poly(N-isopropylacrylamide) (PNIPAAm). PNIPAAm-grafted surfaces exhibited temperature-driven alterations of hydrophilic-hydrophobic surface-properties. Using this feature, PNIPAAm and related temperature-responsive polymers have been used to generate temperature-sensitive stationary phases for chromatographic separations. We attached several different functional polymers, including temperature- and pH-responsive polymers, to silica beads. These temperature-responsive stationary phases are useful in development of separation methods since adjusting the temperature represents an extra tool for optimizing the selectivity. Applications of thermally responsive columns for separations in the HPLC mode are demonstrated.  相似文献   

17.
The binding of Eu3+-doped LaF3 nanoparticles with biotin moieties at the surface of the stabilizing ligand layer to avidin, immobilized on cross-linked aragose beads, is described. The biotin moieties were attached to the nanoparticles by reaction of an activated ester with the amino groups on the surface of the nanoparticles resulting from the 2-aminoethyl phosphate ligands that were coordinated to the surface through the phosphate end. This strategy of employing the reactions of amines with activated esters provides a general platform to modify the surface of the 2-aminophosphate stabilized Ln3+-doped LaF3 nanoparticles with biologically relevant groups. Significant suppression of nonspecific binding to the avidin modified aragose beads has been realized by the incorporation of poly(ethylene glycol) units via the same reaction of a primary amine with an activated ester. The particle size distribution of the functionalized nanoparticles was within 10-50 nm, with a quantum yield of 19% in H2O for the LaF3 nanoparticles codoped with Ce3+ and Tb3+. A discreet, 4 unit poly(ethylene glycol) spaced heterobifunctional cross-linker, functionalized with biotin and N-hydroxysuccinimide at opposite termini, was covalently linked to the 2-aminoethyl phosphate ligand via the N-hydroxysuccinimide activated ester, making an amide bond, imparting biological activity to the particle. Modification of the remaining unreacted amino groups of the stabilizing ligands was done with Me(OCH2CH2)3CH2CH2(C=O)-NHS (NHS = N-hydroxysuccinimide).  相似文献   

18.
Fluorescent molecular thermometers showing temperature-dependent fluorescence lifetimes enable thermal mapping of small spaces such as a microchannel and a living cell. We report the temperature-dependent fluorescence lifetimes of poly(NIPAM-co-DBD-AA), which is a random copolymer of N-isopropylacrylamide (NIPAM) and an environment-sensitive fluorescent monomer (DBD-AA) containing a 4-sulfamoyl-7-aminobenzofurazan structure. The average fluorescence lifetime of poly(NIPAM-co-DBD-AA) in aqueous solution increased from 4.22 to 14.1 ns with increasing temperature from 30 to 35 degrees C. This drastic change in fluorescence lifetime (27% increase per 1 degrees C) is the sharpest ever reported. Concentration independency, one of the advantages of fluorescence lifetime measurements, was seen in average fluorescence lifetime (13.7 +/- 0.18 ns) of poly(NIPAM-co-DBD-AA) at 33 degrees C over a wide concentration range (0.005-1 w/v%). With increasing temperature, polyNIPAM units in poly(NIPAM-co-DBD-AA) change their structure from an extended form to a globular form, providing apolar and aprotic environments to the fluorescent DBD-AA units. Consequently, the environment-sensitive DBD-AA units translate the local environmental changes into the extension of the fluorescence lifetime. This role of the DBD-AA units was revealed by a study of solvent effects on fluorescence lifetime of a model environment-sensitive fluorophore.  相似文献   

19.
We describe the quantitative synthesis of new pyrene labeled cyclodextrin-based polyrotaxane starting from pseudopolyrotaxane of alpha,omega-dimethacrylate poly(ethylene oxide) (PEO) and alpha-cyclodextrins (alpha-CDs). Using a solvent mixture (H2O/dimethyl sulfoxide (DMSO)), an almost quantitative conversion in polyrotaxane can be achieved using the coupling reaction between methacrylic functions and 1-pyrene butyric acid N-hydroxysuccinimide ester. This result is due to the fast blocking reaction of the pseudopolyrotaxane telechelic functions. The polyrotaxanes are characterized by NMR, size exclusion chromatography (SEC), and small-angle neutron scattering (SANS). A rodlike structure of the polyrotaxane is evidenced by SANS, and a persistence length of 70 A is determined. This result corresponds to an almost completely stretched PEO chain of 1000 g.mol(-1) molecular weight. We furthermore studied the opposite case of low packing density polyrotaxanes that were also silylated to suppress interactions between cyclodextrins. We observed a random coil structure only for silylated low packed polyrotaxane. This result demonstrates that both hydrogen bonding and packing density can explain the rodlike structure of cyclodextrin-based polyrotaxane.  相似文献   

20.
Zhu QZ  Yang HH  Li DH  Chen QY  Xu JG 《The Analyst》2000,125(12):2260-2263
Iron tetrasulfonatophthalocyanine (FeTSPc), a peroxidase mimic, was used as a labeling reagent and poly(N-isopropylacrylamide) (PNIP) as the separation support of the immune complex for the mimetic-enzymatic immunoassay of hepatitis B surface antigen (HBsAg). PNIP was precipitated from aqueous solution when the ambient temperature was higher than its lower critical solution temperature of 31 degrees C. In a sandwich immunoassay, the antigen (HBsAg) first reacted with mouse anti-human HBsAg antibody immobilized on PNIP (PNIP-antibody) and then further reacted with FeTSPc-labeled mouse anti-HBsAg antibody (antibody-FeTSPc) at room temperature in a homogeneous format. After changing the temperature to separate the PNIP-antibody-HBsAg-antibody-FeTSPc conjugate moiety, it was re-dissolved and determined by coupling with the fluorogenic reaction of hydrogen peroxide and p-hydroxyphenylpropionic acid. The sensitivity of this method (3 ng mL-1) was close to that of the traditional ELISA using the same reactants. However, the assay was much faster (the assay time decreased from 100-120 to 45 min). This method was applied to determine HBsAg in human serum with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号